Skip to main content
Log in

Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield

  • Published:
Biologia Plantarum

Abstract

Vigna Δ1-pyrroline-5-carboxylate synthetase (P5CS) cDNA was transferred to chickpea (Cicer arietinum L.) cultivar Annigeri via Agrobacterium tumefaciens mediated transformation. Following selection on hygromycin and regeneration, 60 hygromycin-resistant plants were recovered. Southern blot analysis of five fertile independent lines of T0 and T1 generation revealed single and multiple insertions of the transgene. RT-PCR and Western blot analysis of T0 and T1 progeny demonstrated that the P5CS gene is expressed and produced functional protein in chickpea. T1 transgenic lines accumulated higher amount of proline under 250 mM NaCl compared to untransformed controls. Higher accumulation of Na+ was noticed in the older leaves but negligible accumulation in seeds of T1 transgenic lines as compared to the controls. Chlorophyll stability and electrolyte leakage indicated that proline overproduction helps in alleviating salt stress in transgenic chickpea plants. The T1 transgenics lines were grown to maturity and set normal viable seeds under continuous salinity stress (250 mM) without any reduction in plant yield in terms of seed mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

EC:

electrical conductivity

PCR:

polymerase chain reaction

PMSF:

phenylmethylsulfonyl fluoride

Pro:

proline

RT-PCR:

reverse transcription PCR

SDS:

sodium dodecylsulphate

References

  • Arnon, D.I., McSwain, B.D, Tsujimoto, H.Y., Wada, K.: Photochemical activity and components of membrane preparation from blue-green algae. I. Coexistence of two photosystems in relation to chlorophyll a and removal of phycocyanin. — Biochem. Biophys. Acta. 357: 231–245, 1974.

    Article  PubMed  CAS  Google Scholar 

  • Bates, L.S., Waldren, R.P., Teeare, I.D.: Rapid determination of free Pro for water-stress studies. — Plant Soil 39: 205–207, 1973.

    Article  CAS  Google Scholar 

  • Delauney, A.J., Verma, D.P.S.: Proline biosynthesis and osmoregulation in plants.— Plant J. 4: 215–223, 1993.

    Article  CAS  Google Scholar 

  • Doyle, J.J., Doyle, J.L.: Isolation of plant DNA from plant fresh tissue. — BRL Focus. 12: 13–14, 1989.

    Google Scholar 

  • Dua, R.P.: Differential response of chickpea (Cicer arietinum) genotypes to salinity. — J. agr. Sci. 119: 367–371, 1992.

    Article  Google Scholar 

  • Dua, R.P., Sharma, P.C.: Salinity tolerance of Kabuli and Desi chickpea genotypes. — Int. Chickpea/Pigeonpea News Lett. 2: 19–22, 1995.

    Google Scholar 

  • Ermawati, N., Liang, Y.S., Cha, J.Y., Shin, D., Jung, M.H., Lee, J.J., Lee, B.H., Han, C.D., Lee, K.H., Son, D: A new TIP homolog, ShTIP, from Salicornia shows a different involvement in salt stress compared to that of TIP from Arabidopsis. — Biol. Plant. 53: 271–277, 2009.

    Article  CAS  Google Scholar 

  • Garg, A.K., Kim, J.K., Owens, T.G., Ranwala, A.P., Choi, Y.D., Kochian, L.V., Wu, R.J.: Trehalose accumulation in rice plants confers high tolerance levels to different abitoic stresses. — Proc. nat. Acad. Sci. USA 99: 15898–15903, 2002.

    Article  PubMed  CAS  Google Scholar 

  • Greenway, H., Munns, R.: Mechanisms of salt tolerance in non halophytes. — Annu. Rev. Plant Physiol. 31: 149–190, 1980.

    Article  CAS  Google Scholar 

  • Han, K.H., Hwang, C.H.: Salt tolerance enhanced by transformation of a P5CS gene in carrot. — J. Plant Biotechnol. l5: 149–153, 2003.

    Google Scholar 

  • Hu, C., Delauney, A., Verma, D.: A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. — Proc. nat. Acad. Sci. USA 89: 9354–9358, 1992.

    Article  PubMed  CAS  Google Scholar 

  • Jefferson, R.A.: Assaying chimeric genes in plants the GUS gene fusion system. — Plant mol. Biol. Rep. 5: 387–405, 1987.

    Article  CAS  Google Scholar 

  • Kasuga, M., Liu, Q., Miura, S., Yamaguchi-Shinozaki, K., Shinozaki, K.: Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. — Nat. Biotechnol. 17: 287–291, 1999.

    Article  PubMed  CAS  Google Scholar 

  • Kavi Kishor, P.B., Hong, Z., Miao, G.H, Hu, C.A.A., Verma, D.P.S.: Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. — Plant Physiol. 108: 1387–1394, 1995.

    Google Scholar 

  • Kavi Kishor, P.B., Sangam, S., Amrutha, R.N, Sri Laxmi, P., Naidu Rao, K.R, Sreenath Rao, Reddy, K.J., Theriappan, P., Sreenivasulu, N.: Regulation of proline biosynthesis, degradation, uptake and transport in higher plants: its implications in plant growth and abiotic stress tolerance. — Curr. Sci. 88: 422–443, 2005.

    Google Scholar 

  • Kiran Ghanti, S., Sujata, K.G., Srinath Rao, M.: The effect of phenyl acetic acid on shoot bud induction, elongation and rooting of chickpea. — Biol. Plant. 53: 779–783, 2009.

    Article  CAS  Google Scholar 

  • Kovtun, Y., Chiu, W.L., Tena, G., Sheen, J.: Functional analysis of oxidative stress-activated MAPK cascade in plants. — Proc. nat. Acad. Sci. USA 97: 2940–2945, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Lauter, D.J., Munns, D.N.: Salt sensitivity of chickpea during vegetative growth and at different humidities. — Aust. J. Plant Physiol. 14: 171–180, 1987.

    Article  Google Scholar 

  • Leisinger, T.: Biosynthesis of proline. — In: Neidhart, F.C., Ingraham, J.L., Low, K.B., Magasanik, B., Schaechter, M., Umbarger, H.E. (ed.): Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology. Pp. 346–351. American Society for Microbiology, Washington 1987.

    Google Scholar 

  • Leopold, A.C., Willing, R.P.: Evidence for toxicity effects of salt on membrane. — In: Staples, R.C., Tonnessen, G.H. (ed.): Salinity Tolerance in Plants. Strategies for Crop Improvement. Pp. 67–76. Wiley and Sons, New York 1984.

    Google Scholar 

  • Murashige, T, Skoog, F.: A revised medium for rapid growth and bioassays with tobacco tissue cultures. — Physiol. Plant. 15: 473–497, 1962.

    Article  CAS  Google Scholar 

  • Saijo, Y., Hata, S., Kyozuka, J., Shimamoto, K., Izui, K.: Overexpression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. — Plant J. 23: 319–327, 2000.

    Article  PubMed  CAS  Google Scholar 

  • Sambrook, J., Fritish, E.F, Maniatis, T.: Molecular Cloning: a Molecular Manual. 2nd Ed. — Cold Spring Harbor Laboratory Press. Cold Spring Harbor — New York 1989.

    Google Scholar 

  • Sanchayita, K., Tony, M.J., Pritilata, N., Sen, S.K.: Efficient transgenic plant regeneration through Agrobacteriummediated transformation of chickpea (Cicer arietinum L.). — Plant Cell Rep. 16: 32–37, 1996.

    Article  Google Scholar 

  • Saradhi, A., Saradhi, P.P.: Proline accumulation under heavy metal stress. — J. Plant Physiol. 138: 554–558, 1991.

    Google Scholar 

  • Sawahel, W.A., Hassan, A.H.: Generation of transgenic wheat plants producing high levels of the osmoprotectant proline. — Biotechnol. Lett. 24: 721–725, 2002.

    Article  CAS  Google Scholar 

  • Sayari, A.H., Bouzid, R.G., Bidani, A., Jaoua, L., Savoure, A., Jaoua, S.: Over expression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. — Plant Sci. 169: 746–752, 2005.

    Article  Google Scholar 

  • Schobert, B., Tschesche, H.: Unusual solution properties of proline and its interaction with proteins. — Biochim. Biophys. Acta 541: 270–277, 1978.

    PubMed  CAS  Google Scholar 

  • Singla-Pareek, S.L., Reddy, M.K., Sopory, S.K.: Genetic engineering of the glyoxalase pathway in tobacco leads to enhanced salinity tolerance. — Proc. nat. Acad. Sci. USA. 100: 14672–14677, 2003.

    Article  PubMed  CAS  Google Scholar 

  • Smirnoff, N., Cumbes, Q.J.: Hydroxyl radical scavenging activity of compatible solutes. — Phytochemistry 28: 1057–1060, 1989.

    Article  CAS  Google Scholar 

  • Veena Reddy, V.S., Sopory, S.K.: Glyoxalase I from (Brassica juncea) molecular cloning, regulation, and its over expression confer tolerance in transgenic tobacco under stress. — Plant J. 17: 385–395, 1999.

    Article  Google Scholar 

  • Venekamp, J.H., Lampe, J.E.M., Koot, J.T.M.: Organic acids as sources of drought induced proline synthesis in field bean plants (Vicia faba L.) — J. Plant Physiol. 133: 654–659, 1989.

    CAS  Google Scholar 

  • Verwoerd, T.H.C., Dekker, B.M.M., Hoekema, A.: A smallscale procedure for the rapid isolation of plant RNAs. — Nucl. Acids Res. 6: 23–62, 1989.

    Google Scholar 

  • Winicov, I.: Alfin1 transcription factor over expression enhances plant root growth under normal and saline conditions and improves salt tolerance in alfalfa. — Planta 210: 416–422, 2000.

    Google Scholar 

  • Xu, D., Duan, X., Wang, B., Hong, B., Ho, T.H.D., Wu, R.: Expression of a late embryogenesis abundant protein gene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice.— Plant Physiol. 110: 249–257,1996.

    PubMed  CAS  Google Scholar 

  • Zhang, H.K., Hodson, J.N., Williams, J.P., Blumwald, E.: Engineering salt-tolerant (Brassica) plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. — Proc. nat. Acad. Sci. USA 98: 12832–12836, 2001.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, B., Su, J., Chang, M., Verma, D.P.S., Fan, Y.L., Wu, R.: Overexpression of a Δ1-pyrroline-5-carboxylate synthetase gene and analysis of tolerance to water and salt-stress in transgenic rice. — Plant Sci. 139: 41–48, 1998.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Kiran Kumar Ghanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kiran Kumar Ghanti, S., Sujata, K.G., Vijay Kumar, B.M. et al. Heterologous expression of P5CS gene in chickpea enhances salt tolerance without affecting yield. Biol Plant 55, 634 (2011). https://doi.org/10.1007/s10535-011-0161-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10535-011-0161-0

Additional key words

Navigation