Skip to main content
Log in

Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

A thorough understanding of the diseased tissue state is necessary for the successful treatment of a blocked arterial vessel using stent angioplasty. The constitutive representation of atherosclerotic tissue is of great interest to researchers and engineers using computational models to analyse stents, as it is this in silico environment that allows extensive exploration of tissue response to device implantation. This paper presents an in silico evaluation of the effects of variation of atherosclerotic tissue constitutive representation on tissue mechanical response during stent implantation. The motivation behind this work is to investigate the level of detail that is required when modelling atherosclerotic tissue in a stenting simulation, and to give recommendations to the FDA for their guideline document on coronary stent evaluation, and specifically the current requirements for computational stress analyses. This paper explores the effects of variation of the material model for the atherosclerotic tissue matrix, the effects of inclusion of calcifications and a lipid pool, and finally the effects of inclusion of the Mullins effect in the atherosclerotic tissue matrix, on tissue response in stenting simulations. Results indicate that the inclusion of the Mullins effect in a direct stenting simulation does not have a significant effect on the deformed shape of the tissue or the stress state of the tissue. The inclusion of a lipid pool induces a local redistribution of lesion deformation for a soft surrounding matrix and the inclusion of a small volume of calcifications dramatically alters the local results for a soft surrounding matrix. One of the key findings from this work is that the underlying constitutive model (elasticity model) used for the atherosclerotic tissue is the dominant feature of the tissue representation in predicting tissue response in a stenting simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Akyildiz, A. C., L. Speelman, and F. J. H. Gijsen. Mechanical properties of human atherosclerotic intima tissue. J. Biomech. 3(47):773–783, 2014.

    Article  Google Scholar 

  2. Anon. Abaqus 6.10 Theory Manual, DS SIMULIA Corp., Providence, RI, USA 2010.

  3. Barrett, S. R. H., M. P. F. Sutcliffe, S. Howarth, Z. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42:1650–1655, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Bedoya, J., C. A. Meyer, L. H. Timmins, M. R. Moreno, and J. E. Moore, Jr. Effects of stent design parameters on normal artery wall mechanics. J. Biomech. Eng. 128:757–765, 2006.

    Article  PubMed  Google Scholar 

  5. Brinkhues, S., D. Balzani, and G. A. Holzapfel. Simulation of damage hysteresis in soft biological tissues. PAMM 9:155–156, 2009.

    Article  Google Scholar 

  6. Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31:441–447, 2009.

    Article  PubMed  Google Scholar 

  7. Cardoso, L., and S. Weinbaum. Changing views of the biomechanics of vulnerable plaque rupture: a review. Ann. Biomed. Eng. 42:415–431, 2014.

    Article  PubMed  Google Scholar 

  8. Chai, C.-K., A. C. Akyildiz, L. Speelman, F. J. H. Gijsen, C. W. J. Oomens, M. R. H. M. van Sambeek, et al. Local axial compressive mechanical properties of human carotid atherosclerotic plaques-characterisation by indentation test and inverse finite element analysis. J. Biomech. 21(46):1759–1766, 2013.

    Article  Google Scholar 

  9. Chai, C.-K., L. Speelman, C. W. J. Oomens, and F. P. T. Baaijens. Compressive mechanical properties of atherosclerotic plaques–indentation test to characterise the local anisotropic behaviour. J. Biomech. 3(47):784–792, 2014.

    Article  Google Scholar 

  10. Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87:1179–1187, 1993.

    Article  CAS  PubMed  Google Scholar 

  11. Chua, S. N. D., B. J. Mac Donald, and M. S. J. Hashmi. Finite-element simulation of stent expansion. J. Mater. Process. Technol. 15(120):335–340, 2002.

    Article  Google Scholar 

  12. Conway, C., F. Sharif, J. McGarry, and P. McHugh. A computational test-bed to assess coronary stent implantation mechanics using a population-specific approach. Cardiovasc. Eng. Technol. 3:1–14, 2012.

    Article  Google Scholar 

  13. Ebenstein, D. M., D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. Part A 15(91A):1028–1037, 2009.

    Article  Google Scholar 

  14. FDA. Non-Clinical Engineering Tests and Recommended Labeling for Intravascular Stents and Associated Delivery Systems [Internet] [cited 2012 June 25]: Available from: http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm071863.htm.

  15. García, A., E. Peña, and M. A. Martínez. Influence of geometrical parameters on radial force during self-expanding stent deployment. Application for a variable radial stiffness stent. J. Mech. Behav. Biomed. Mater. 10:166–175, 2012.

    Article  PubMed  Google Scholar 

  16. Gasser, T. C., R. W. Ogden, and G. A. Holzapfel. Hyperelastic modelling of arterial layers with distributed collagen fibre orientations. J. R. Soc. Interface 3:15–35, 2006.

    Article  PubMed Central  PubMed  Google Scholar 

  17. Gastaldi, D., S. Morlacchi, R. Nichetti, C. Capelli, G. Dubini, L. Petrini, et al. Modelling of the provisional side-branch stenting approach for the treatment of atherosclerotic coronary bifurcations: effects of stent positioning. Biomech. Model. Mechanobiol. 9:551–561, 2010.

    Article  PubMed  Google Scholar 

  18. Gijsen, F. J. H., and F. Migliavacca. Plaque mechanics. J. Biomech. 3(47):763–764, 2014.

    Article  Google Scholar 

  19. Grogan, J. A., B. J. O’Brien, S. B. Leen, and P. E. McHugh. A corrosion model for bioabsorbable metallic stents. Acta Biomater. 7:3523–3533, 2011.

    Article  CAS  PubMed  Google Scholar 

  20. Grogan, J. A., S. B. Leen, and P. E. McHugh. Optimizing the design of a bioabsorbable metal stent using computer simulation methods. Biomaterials 34:8049–8060, 2013.

    Article  CAS  PubMed  Google Scholar 

  21. Harewood, F., J. Grogan, and P. McHugh. A multiscale approach to failure assessment in deployment for cardiovascular stents. J. Multiscal. Model. 2:1–22, 2010.

    Article  Google Scholar 

  22. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126:657–665, 2004.

    Article  PubMed  Google Scholar 

  23. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127:166–180, 2005.

    Article  PubMed  Google Scholar 

  24. Holzapfel, G. A., J. J. Mulvihill, E. M. Cunnane, and M. T. Walsh. Computational approaches for analyzing the mechanics of atherosclerotic plaques: a review. J. Biomech. 47:859–869, 2014.

    Article  PubMed  Google Scholar 

  25. Iannaccone, F., N. Debusschere, S. De Bock, M. De Beule, D. Van Loo, F. Vermassen, et al. The influence of vascular anatomy on carotid artery stenting: a parametric study for damage assessment. J. Biomech. 3(47):890–898, 2014.

    Article  Google Scholar 

  26. Kelly, N., and J. P. McGarry. Experimental and numerical characterisation of the elasto-plastic properties of bovine trabecular bone and a trabecular bone analogue. J. Mech. Behav. Biomed. Mater. 9:184–197, 2012.

    Article  PubMed  Google Scholar 

  27. Kelly, N., N. M. Harrison, P. McDonnell, and J. P. McGarry. An experimental and computational investigation of the post-yield behaviour of trabecular bone during vertebral device subsidence. Biomech. Model. Mechanobiol. 12:685–703, 2013.

    Article  PubMed  Google Scholar 

  28. Kelly-Arnold, A., N. Maldonado, D. Laudier, E. Aikawa, L. Cardoso, and S. Weinbaum. Revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Natl. Acad. Sci. USA 25(110):10741–10746, 2013.

    Article  Google Scholar 

  29. Kolandaivelu, K., B. B. Leiden, and E. R. Edelman. Predicting response to endovascular therapies: dissecting the roles of local lesion complexity, systemic comorbidity, and clinical uncertainty. J. Biomech. 3(47):908–921, 2014.

    Article  Google Scholar 

  30. Laroche, D., S. Delorme, T. Anderson, and R. DiRaddo. Computer prediction of friction in balloon angioplasty and stent implantation. Biomed. Simul. 4072:1–8, 2006.

    Article  Google Scholar 

  31. Lawlor, M. G., M. R. O’Donnell, B. M. O’Connell, and M. T. Walsh. Experimental determination of circumferential properties of fresh carotid artery plaques. J. Biomech. 3(44):1709–1715, 2011.

    Article  Google Scholar 

  32. Lee, R., A. Grodzinsky, E. Frank, R. Kamm, and F. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770, 1991.

    Article  CAS  PubMed  Google Scholar 

  33. Li, Z.-Y., S. Howarth, R. A. Trivedi, J. M. U-King-Im, M. J. Graves, A. Brown, et al. Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J. Biomech. 39:2611–2622, 2006.

    Article  PubMed  Google Scholar 

  34. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27:195–204, 1994.

    Article  CAS  PubMed  Google Scholar 

  35. Loree, H. M., B. J. Tobias, L. J. Gibson, R. D. Kamm, D. M. Small, and R. T. Lee. Mechanical properties of model atherosclerotic lesion lipid pools. Arterioscler. Thromb. Vasc. Biol. 1(14):230–234, 1994.

    Article  Google Scholar 

  36. Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech. 11(42):2760–2767, 2009.

    Article  Google Scholar 

  37. Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 27(39):2445–2455, 2011.

    Article  Google Scholar 

  38. Maher, E., A. Creane, S. Sultan, N. Hynes, C. Lally, and D. J. Kelly. Inelasticity of human carotid atherosclerotic plaque. Ann. Biomed. Eng. 39:2445–2455, 2011.

    Article  PubMed  Google Scholar 

  39. Maldonado, N., A. Kelly-Arnold, Y. Vengrenyuk, D. Laudier, J. T. Fallon, R. Virmani, et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 1(303):H619–H628, 2012.

    Article  Google Scholar 

  40. McGarry, J. P., B. P. O’Donnell, P. E. McHugh, E. O’Cearbhaill, and R. M. McMeeking. Computational examination of the effect of material inhomogeneity on the necking of stent struts under tensile loading. J. Appl. Mech. 74:978–989, 2007.

    Article  Google Scholar 

  41. Morlacchi, S., and F. Migliavacca. Modeling stented coronary arteries: where we are, where to go. Ann. Biomed. Eng. 41:1428–1444, 2013.

    Article  PubMed  Google Scholar 

  42. Morlacchi, S., S. G. Colleoni, R. Cárdenes, C. Chiastra, J. L. Diez, I. Larrabide, et al. Patient-specific simulations of stenting procedures in coronary bifurcations: two clinical cases. Med. Eng. Phys. 35:1272–1281, 2013.

    Article  PubMed  Google Scholar 

  43. Morlacchi, S., G. Pennati, L. Petrini, G. Dubini, and F. Migliavacca. Influence of plaque calcifications on coronary stent fracture: a numerical fatigue life analysis including cardiac wall movement. J. Biomech. 3(47):899–907, 2014.

    Article  Google Scholar 

  44. Mortier, P., M. D. Beule, S. G. Carlier, R. V. Impe, B. Verhegghe, and P. Verdonck. Numerical study of the uniformity of balloon-expandable stent deployment. J. Biomech. Eng. 130:021018, 2008.

    Article  CAS  PubMed  Google Scholar 

  45. Mortier, P., G. A. Holzapfel, M. De Beule, D. Van Loo, Y. Taeymans, P. Segers, et al. A novel simulation strategy for stent insertion and deployment in curved coronary bifurcations: comparison of three drug-eluting stents. Ann. Biomed. Eng. 38:88–99, 2010.

    Article  PubMed  Google Scholar 

  46. Mulvihill, J. J., and M. T. Walsh. On the mechanical behaviour of carotid artery plaques: the influence of curve-fitting experimental data on numerical model results. Biomech. Model. Mechanobiol. 12:975–985, 2013.

    Article  PubMed  Google Scholar 

  47. Mulvihill, J. J., E. M. Cunnane, S. M. McHugh, E. G. Kavanagh, S. R. Walsh, and M. T. Walsh. Mechanical, biological and structural characterization of in vitro ruptured human carotid plaque tissue. Acta Biomater. 9:9027–9035, 2013.

    Article  CAS  PubMed  Google Scholar 

  48. Ogden, R. W., and D. G. Roxburgh. A pseudo-elastic model for the Mullins effect in filled rubber. Proc. R Soc. Lond. A 455:2861–2877, 1999.

    Article  Google Scholar 

  49. Pericevic, I., C. Lally, D. Toner, and D. J. Kelly. The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med. Eng. Phys. 31:428–433, 2009.

    Article  PubMed  Google Scholar 

  50. Rambhia, S. H., X. Liang, M. Xenos, Y. Alemu, N. Maldonado, A. Kelly, et al. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid-structure interaction study. Ann. Biomed. Eng. 40:1443–1454, 2012.

    Article  CAS  PubMed  Google Scholar 

  51. Salunke, N. V., L. D. T. Topoleski, J. D. Humphrey, and W. J. Mergner. Compressive stress-relaxation of human atherosclerotic plaque. J. Biomed. Mater. Res. 55:236–241, 2001.

    Article  CAS  PubMed  Google Scholar 

  52. Stary, H. Atlas of Atherosclerosis Progression and Regression. New York: Parthenon Publishing, 1999.

    Google Scholar 

  53. Stary, H. C. Natural history of calcium deposits in atherosclerosis progression and regression. Z Kardiol 1(89):S028–S035, 2000.

    Google Scholar 

  54. Teng, Z., D. Tang, J. Zheng, P. K. Woodard, and A. H. Hoffman. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 13(42):2535–2539, 2009.

    Article  Google Scholar 

  55. Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Effects of stent design and atherosclerotic plaque composition on arterial wall biomechanics. J. Endovasc. Ther. 15:643–654, 2008.

    Article  PubMed Central  PubMed  Google Scholar 

  56. Topoleski, L. D. T., N. V. Salunke, J. D. Humphrey, and W. J. Mergner. Composition- and history-dependent radial compressive behavior of human atherosclerotic plaque. J. Biomed. Mater. Res. 35:117–127, 1997.

    Article  CAS  PubMed  Google Scholar 

  57. Vavuranakis, M., K. Toutouzas, C. Stefanadis, C. Chrisohou, D. Markou, and P. Toutouzas. Stent deployment in calcified lesions: can we overcome calcific restraint with high-pressure balloon inflations? Catheter. Cardiovasc. Interv. 52:164–172, 2001.

    Article  CAS  PubMed  Google Scholar 

  58. Vengrenyuk, Y., S. Carlier, S. Xanthos, L. Cardoso, P. Ganatos, R. Virmani, et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Natl. Acad. Sci. USA 3(103):14678–14683, 2006.

    Article  Google Scholar 

  59. Walraevens, J., B. Willaert, G. De Win, A. Ranftl, J. De Schutter, and J. V. Sloten. Correlation between compression, tensile and tearing tests on healthy and calcified aortic tissues. Med. Eng. Phys. 30:1098–1104, 2008.

    Article  PubMed  Google Scholar 

  60. Walsh, M. T., E. M. Cunnane, J. J. Mulvihill, A. C. Akyildiz, F. J. H. Gijsen, and G. A. Holzapfel. Uniaxial tensile testing approaches for characterisation of atherosclerotic plaques. J. Biomech. 3(47):793–804, 2014.

    Article  Google Scholar 

  61. Wenk, J. F. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study. J. Biomech. Eng. 133:014503, 2010.

    Article  Google Scholar 

  62. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery—determination of the optimum modelling strategy. J. Biomech. 43:2126–2132, 2010.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge funding from the Irish Research Council/Irish Research Council for Science, Engineering and Technology under the Embark Initiative (C. Conway) and the SFI/HEA Irish Centre for High End Computing for the provision of computational facilities and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Conway.

Additional information

Associate Editor Estefanía Peña oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Conway, C., McGarry, J.P. & McHugh, P.E. Modelling of Atherosclerotic Plaque for Use in a Computational Test-Bed for Stent Angioplasty. Ann Biomed Eng 42, 2425–2439 (2014). https://doi.org/10.1007/s10439-014-1107-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-014-1107-4

Keywords

Navigation