Skip to main content
Log in

Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis

  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Wall injury is observed during stent expansion within atherosclerotic arteries, related in part to stimulation of the inflammatory process. Wall stress and strain induced by stent expansion can be closely examined by finite element analysis (FEA), thus shedding light on procedure-induced sources of inflammation. The purpose of this work was to use FEA to examine the interaction of a coiled polymer stent with a plaque-containing arterial wall during stent expansion. An asymmetric fibrotic plaque-containing arterial wall model was created from intravascular ultrasound (IVUS) images of a diseased artery. A 3D model for a coil stent at unexpanded state was generated in SolidWorks. They were imported into ANSYS for FEA of combined stent expansion and fibrotic plaque-distortion. We simulated the stent expansion in the plaqued lumen by increasing balloon pressure from 0 to 12 atm in 1 atm step. At increasing pressure, we examined how the expanding stent exerts forces on the fibrotic plaque and vascular wall components, and how the latter collectively resist and balance the expansive forces from the stent. Results show the expanding coiled stent creates high stresses within the plaque and the surrounding fibrotic capsule. Lower stresses were observed in adjacent medial and adventitial layers. High principal strains were observed in plaque and fibrotic capsule. The results suggest fibrotic capsule rupture might occur at localized regions. The FEA/IVUS method can be adapted for routine examination of the effects of the expansion of selected furled stents against IVUS-reconstructed diseased vessels, to improve stent deployment practices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Berry, J. L., E. Manoach, C. Mekkaoui, P. H. Rolland, J. E. Moore, Jr, and A. Rachev. Hemodynamics and wall mechanics of a compliance matching stent. In vitro and in vivo analysis. J. Vasc. Interv. Radiol. 13(1):97–105, 2002. doi:10.1016/S1051-0443(07)60015-3.

    Article  Google Scholar 

  2. Capelli, C., F. Gervaso, L. Petrini, G. Dubini, and F. Migliavacca. Assessment of tissue prolapse after balloon-expandable stenting: influence of stent cell geometry. Med. Eng. Phys. 31(4):441–447, 2009. doi:10.1016/j.medengphy.2008.11.002.

    Article  Google Scholar 

  3. Chaabane, C., F. Otsuka, R. Virmani, and M. L. Bochaton-Piallat. Biological responses in stented arteries. Cardiovasc. Res. 99(2):353–363, 2013. doi:10.1093/cvr/cvt115.

    Article  Google Scholar 

  4. Chua, S. N. D., B. J. MacDonald, and M. S. J. Hashmi. Finite-element simulation of stent expansion. J. Mater. Process. Technol. 120(1–3):335–340, 2002. doi:10.1016/S0924-0136(01)01127-X.

    Article  Google Scholar 

  5. Chua, S. N. D., B. J. MacDonald, and M. S. J. Hashmi. Finite element simulation of slotted tube (stent) with the presence of plaque and artery by balloon expansion. J. Mater. Process. Technol. 155–156:1772–1779, 2004. doi:10.1016/j.jmatprotec.2004.04.396.

    Article  Google Scholar 

  6. De Beule, M., P. Mortier, S. G. Carlier, B. Verhegghe, R. Van Impe, and P. Verdonck. Realistic finite element-based stent design: the impact of balloon folding. J. Biomech. 41(2):383–389, 2008. doi:10.1016/j.jbiomech.2007.08.014.

    Article  Google Scholar 

  7. Dee, K. C., D. A. Puleo, and R. Bizios. Inflammation and Infection. An Introduction to Tissue-Biomaterial Interactions. New York: Wiley, pp. 89–108, 2003.

    Book  Google Scholar 

  8. Escaned, J., J. Goicolea, F. Alfonso, M. J. Perez-Vizcayno, R. Hernandez, A. Fernandez-Ortiz, et al. Propensity and mechanisms of restenosis in different coronary stent designsComplementary value of the analysis of the luminal gain-loss relationship. J. Am. Coll. Cardiol. 34(5):1490–1497, 1999. doi:10.1016/S0735-1097(99)00378-2.

    Article  Google Scholar 

  9. Gervaso, F., C. Capelli, L. Petrini, S. Lattanzio, L. Di Virgilio, and F. Migliavacca. On the effects of different strategies in modelling balloon-expandable stenting by means of finite element method. J. Biomech. 41(6):1206–1212, 2008. doi:10.1016/j.jbiomech.2008.01.027.

    Article  Google Scholar 

  10. Gijsen, F. J., F. Migliavacca, S. Schievano, L. Socci, L. Petrini, A. Thury, et al. Simulation of stent deployment in a realistic human coronary artery. Biomed. Eng. 7:23, 2008. doi:10.1186/1475-925X-7-23.

    Google Scholar 

  11. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126(5):657–665, 2004.

    Article  Google Scholar 

  12. Holzapfel, G. A., M. Stadler, and T. C. Gasser. Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. J. Biomech. Eng. 127(1):166–180, 2005.

    Article  Google Scholar 

  13. Humphrey, J. Cardiovascular Solid Mechanics: Cells, Tissues, and Organs (1st ed.). New York: Springer-Verlag, 2002.

    Book  Google Scholar 

  14. Ju, F., Z. Xia, and K. Sasaki. On the finite element modelling of balloon-expandable stents. J. Mech. Behav. Biomed. Mater. 1(1):86–95, 2008. doi:10.1016/j.jmbbm.2007.07.002.

    Article  Google Scholar 

  15. Kiousis, D. E., A. R. Wulff, and G. A. Holzapfel. Experimental studies and numerical analysis of the inflation and interaction of vascular balloon catheter-stent systems. Ann. Biomed. Eng. 37(2):315–330, 2009. doi:10.1007/s10439-008-9606-9.

    Article  Google Scholar 

  16. Lally, C., F. Dolan, and P. J. Prendergast. Cardiovascular stent design and vessel stresses: a finite element analysis. J. Biomech. 38(8):1574–1581, 2005. doi:10.1016/j.jbiomech.2004.07.022.

    Article  Google Scholar 

  17. Lee, R. T. Atherosclerotic lesion mechanics versus biology. Z. Kardiol. 89(Suppl 2):80–84, 2000.

    Article  Google Scholar 

  18. Liang, D. K., D. Z. Yang, M. Qi, and W. Q. Wang. Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int. J. Cardiol. 104(3):314–318, 2005. doi:10.1016/j.ijcard.2004.12.033.

    Article  Google Scholar 

  19. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27(2):195–204, 1994.

    Article  Google Scholar 

  20. Migliavacca, F., L. Petrini, V. Montanari, I. Quagliana, F. Auricchio, and G. Dubini. A predictive study of the mechanical behaviour of coronary stents by computer modelling. Med. Eng. Phys. 27(1):13–18, 2005. doi:10.1016/j.medengphy.2004.08.012.

    Article  Google Scholar 

  21. Prasad, A., D. J. Cipher, A. Prasad, A. Mohandas, M. Roesle, E. S. Brilakis, et al. Reproducibility of intravascular ultrasound virtual histology analysis. Cardiovasc. Revascularization Med. 9(2):71–77, 2008. doi:10.1016/j.carrev.2007.11.004.

    Article  Google Scholar 

  22. Su, S. H., R. Y. Chao, C. L. Landau, K. D. Nelson, R. B. Timmons, R. S. Meidell, et al. Expandable bioresorbable endovascular stent. I. Fabrication and properties. Ann. Biomed. Eng. 31(6):667–677, 2003.

    Article  Google Scholar 

  23. Timmins, L. H., C. A. Meyer, M. R. Moreno, and J. E. Moore, Jr. Mechanical modeling of stents deployed in tapered arteries. Ann. Biomed. Eng. 36(12):2042–2050, 2008. doi:10.1007/s10439-008-9582-0.

    Article  Google Scholar 

  24. Timmins, L. H., M. W. Miller, F. J. Clubb, Jr, and J. E. Moore, Jr. Increased artery wall stress post-stenting leads to greater intimal thickening. Lab. Investig. 91(6):955–967, 2011. doi:10.1038/labinvest.2011.57.

    Article  Google Scholar 

  25. Topol, E. J., and P. W. Serruys. Frontiers in interventional cardiology. Circulation 98(17):1802–1820, 1998.

    Article  Google Scholar 

  26. Walke, W., Z. Paszenda, and J. Filipiak. Experimental and numerical biomechanical analysis of vascular stent. J. Mater. Process. Technol. 164–165:1263–1268, 2005. doi:10.1016/j.jmatprotec.2005.02.204.

    Article  Google Scholar 

  27. Welch, T., R. C. Eberhart, and C. J. Chuong. Characterizing the expansive deformation of a bioresorbable polymer fiber stent. Ann. Biomed. Eng. 36(5):742–751, 2008. doi:10.1007/s10439-008-9455-6.

    Article  Google Scholar 

  28. Welch, T. R., R. C. Eberhart, and C. J. Chuong. The influence of thermal treatment on the mechanical characteristics of a PLLA coiled stent. J. Biomed. Mater. Res. B Appl. Biomater. 90(1):302–311, 2009. doi:10.1002/jbm.b.31286.

    Google Scholar 

  29. Welch, T., R. Eberhart, J. Reisch, and C.-J. Chuong. Influence of thermal annealing on the mechanical properties of PLLA coiled stents. Cardiovasc. Eng. Technol. 5(3):270–280, 2014. doi:10.1007/s13239-014-0189-3.

    Article  Google Scholar 

  30. Wu, W., W. Q. Wang, D. Z. Yang, and M. Qi. Stent expansion in curved vessel and their interactions: a finite element analysis. J. Biomech. 40(11):2580–2585, 2007. doi:10.1016/j.jbiomech.2006.11.009.

    Article  Google Scholar 

  31. Zahedmanesh, H., D. John Kelly, and C. Lally. Simulation of a balloon expandable stent in a realistic coronary artery-Determination of the optimum modelling strategy. J. Biomech. 43(11):2126–2132, 2010. doi:10.1016/j.jbiomech.2010.03.050.

    Article  Google Scholar 

  32. Zahedmanesh, H., and C. Lally. Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med. Biol. Eng. Comput. 47(4):385–393, 2009. doi:10.1007/s11517-009-0432-5.

    Article  Google Scholar 

  33. Zhao, S., L. Gu, and S. Froemming. Effects of arterial strain and stress in the prediction of restenosis risk: computer modeling of stent trials. Biomed. Eng. Lett. 2(3):158–163, 2012. doi:10.1007/s13534-012-0067-6.

    Article  Google Scholar 

Download references

Conflict of Interest

Authors Dr. Tré R. Welch, Dr. Robert C. Eberhart, Dr. Subhash Banerjee and Dr. Cheng-Jen Chuong have no conflict of interest.

Statement of Human Studies

No human studies were carried out by the authors for this article.

Statement of Animal Studies

No animal studies were carried out by the authors for this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tré R. Welch.

Additional information

Associate Editor Ajit P. Yoganathan oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Welch, T.R., Eberhart, R.C., Banerjee, S. et al. Mechanical Interaction of an Expanding Coiled Stent with a Plaque-Containing Arterial Wall: A Finite Element Analysis. Cardiovasc Eng Tech 7, 58–68 (2016). https://doi.org/10.1007/s13239-015-0249-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-015-0249-3

Keywords

Navigation