Skip to main content

Advertisement

Log in

A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery

  • Original Article
  • Published:
Medical & Biological Engineering & Computing Aims and scope Submit manuscript

Abstract

The stresses induced on plaque wall during stent implantation inside a stenotic artery are associated with plaque rupture. The stresses in the plaque–artery–stent structure appear to be distinctly different for different plaque types in terms of both distribution and magnitude. In this study, a nonlinear finite element simulation was executed to analyze the influence of plaque composition (calcified, cellular, and hypocellular) on plaque, artery layers (intima, media, and adventitia), and stent stresses during implantation of a balloon expandable coronary stent into a stenosed artery. The atherosclerotic artery was assumed to consist of a plaque and normal arterial tissues on its outer side. The results revealed a significant influence of plaque types on the maximum stresses induced within plaque wall and artery layers during stenting, but not when calculating maximum stress on stent. The stress on stiffer calcified plaque wall was in the fracture level (2.21 MPa), whereas cellular and hypocellular plaques play a protective role by displaying less stress on their wall. The highest von Mises stresses were observed on less stiff media layer. The findings of this study suggest a lower risk of arterial vascular injury for calcified plaque, while higher risk of plaque ruptures for cellular and hypocellular plaques.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Chua S, Mac Donald B, Hashmi M (2002) Finite-element simulation of stent expansion. J Mater Process Technol 120:335–340

    Article  CAS  Google Scholar 

  2. Colombo A, Stankovic G, Moses JW (2002) Selection of coronary stents. J Am Coll Cardiol 40:1021–1033. doi:10.1016/S0735-1097(02)02123-X

    Article  PubMed  Google Scholar 

  3. David Chua SN, Mac Donald BJ, Hashmi MSJ (2003) Finite element simulation of stent and balloon interaction. J Mater Process Technol 143–144:591–597. doi:10.1016/S0924-0136(03)00435-7

    Article  Google Scholar 

  4. de Weert TT, Ouhlous M, Zondervan PE, Hendriks JM, Dippel DW, van Sambeek MR, van der Lugt A (2005) In vitro characterization of atherosclerotic carotid plaque with multidetector computed tomography and histopathological correlation. Eur Radiol 15:1906–1914

    Article  PubMed  Google Scholar 

  5. Faghihi S, Gheysour M, Karimi A, Salarian R (2014) Fabrication and mechanical characterization of graphene oxide-reinforced poly (acrylic acid)/gelatin composite hydrogels. J Appl Phys 115(8):083513. doi:10.1063/1.4864153

    Article  Google Scholar 

  6. Faghihi S, Karimi A, Jamadi M, Imani R, Salarian R (2014) Graphene oxide/poly(acrylic acid)/gelatin nanocomposite hydrogel: experimental and numerical validation of hyperelastic model. Mater Sci Eng, C 38:299–305. doi:10.1016/j.msec.2014.02.015

    Article  CAS  Google Scholar 

  7. Faturechi R, Karimi A, Hashemi A, Navidbakhsh M (2014) Mechanical characterization of peritoneum/fascia under uniaxial loading. J Biomater Tissue Eng 4:189–193. doi:10.1166/jbt.2014.1156

    Article  Google Scholar 

  8. Halabian M, Karimi A, Barati E, Navidbakhsh M (2014) Numerical evaluation of stenosis location effects on hemodynamics and shear stress through curved artery. J Biomater Tissue Eng. doi:10.1166/jbt.2014.1176

  9. Hamilton AJ, Kim H, Nagaraj A, Mun J-H, Yan LL, Roth SI, McPherson DD, Chandran KB (2005) Regional material property alterations in porcine femoral arteries with atheroma development. J Biomech 38:2354–2364. doi:10.1016/j.jbiomech.2004.10.018

    Article  PubMed  Google Scholar 

  10. Holzapfel GA, Sommer G, Gasser CT, Regitnig P (2005) Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am J Physiol Heart Circ Physiol 289:H2048–H2058

    Article  CAS  PubMed  Google Scholar 

  11. Holzapfel GA, Sommer G, Regitnig P (2004) Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. Trans ASME-K-J Biomech Eng 126:657–665. doi:10.1115/1.1800557

    Article  Google Scholar 

  12. Holzapfel GA, Stadler M, Gasser TC (2005) Changes in the mechanical environment of stenotic arteries during interaction with stents: computational assessment of parametric stent designs. Trans ASME-K-J Biomech Eng 127:166–180. doi:10.1115/1.1835362

    Article  Google Scholar 

  13. Karimi A, Faturechi R, Navidbakhsh M, Hashemi A (2014) A nonlinear hyperelastic behavior to identify the mechanical properties of rat skin under uniaxial loading. J Mech Med Biol 14:1450075. doi:10.1142/S0219519414500754

    Article  Google Scholar 

  14. Karimi A, Navidbakhsh M (2013) Measurement of the nonlinear mechanical properties of PVA sponge under longitudinal and circumferential loading. J Appl Polym Sci 131:40257. doi:10.1002/APP.40257

    Google Scholar 

  15. Karimi A, Navidbakhsh M, Haghpanahi M (2014) Constitutive model for numerical analysis of polyvinyl alcohol sponge under different strain rates. J Thermoplast Compos Mater. doi:10.1177/0892705713520176

    Google Scholar 

  16. Karimi A, Navidbakhsh M (2014) An experimental study on the mechanical properties of rat brain tissue using different stress-strain definitions. J Mater Sci Mater Med. doi:10.1007/s10856-014-5198-0

    PubMed  Google Scholar 

  17. Karimi A, Navidbakhsh M, Yousefi H (2014) Mechanical properties of polyvinyl alcohol sponge under different strain rates. Int J Mater Res 105:404–408. doi:10.3139/146.111036

    Article  CAS  Google Scholar 

  18. Karimi A, Navidbakhsh M (2014) Mechanical properties of PVA material for tissue engineering applications. Mater Tech Adv Perform Mater 29:90–100. doi:10.1179/1753555713Y.0000000115

    CAS  Google Scholar 

  19. Karimi A, Navidbakhsh M, Alizadeh M, Razaghi R (2014b) A comparative study on the elastic modulus of polyvinyl alcohol sponge using different stress-strain definitions. Biomed Eng. doi:10.1515/bmt-2013-0110

  20. Karimi A, Navidbakhsh M, Alizadeh M, Shojaei A (2014) A comparative study on the mechanical properties of the umbilical vein and umbilical artery under uniaxial loading. Artery Res. doi:10.1016/j.artres.2014.02.001

    Google Scholar 

  21. Karimi A, Navidbakhsh M, Beigzadeh B (2014) A visco-hyperelastic constitutive approach for modeling polyvinyl alcohol sponge. Tissue Cell 46:97–102. doi:10.1016/j.tice.2013.12.004

    Article  CAS  PubMed  Google Scholar 

  22. Karimi A, Navidbakhsh M, Beigzadeh B, Faghihi S (2013) Hyperelastic mechanical behavior of rat brain infected by Plasmodium berghei ANKA-experimental testing and constitutive modeling. Int J Damage Mech. doi:10.1177/1056789513514072

    Google Scholar 

  23. Karimi A, Navidbakhsh M, Faghihi S (2014) A comparative study on plaque vulnerability using constitutive equations. Perfusion 29:179–184. doi:10.1177/0267659113502835

    Google Scholar 

  24. Karimi A, Navidbakhsh M, Faghihi S (2014) Fabrication and mechanical characterization of polyvinyl alcohol sponge for tissue engineering applications. Perfusion 29:232–238. doi:10.1177/0267659113513823

    Google Scholar 

  25. Karimi A, Navidbakhsh M, Faghihi S (2014) Measurement of the mechanical failure of PVA sponge using biaxial puncture test. J Biomater Tissue Eng 4:46–50. doi:10.1166/jbt.2014.1134

    Article  CAS  Google Scholar 

  26. Karimi A, Navidbakhsh M, Faghihi S, Shojaei A, Hassani K (2013) A finite element investigation on plaque vulnerability in realistic healthy and atherosclerotic human coronary arteries. Proc Inst Mech Eng H 227:148–161. doi:10.1177/0954411912461239

    Article  PubMed  Google Scholar 

  27. Karimi A, Navidbakhsh M, Motevalli Haghi A, Faghihi S (2013) Measurement of the uniaxial mechanical properties of rat brains infected by Plasmodium berghei ANKA. Proc Inst Mech Eng H 227:609–614. doi:10.1177/0954411913476779

    Article  PubMed  Google Scholar 

  28. Karimi A, Navidbakhsh M, Razaghi R (2014) Dynamic finite element simulation of the human head damage mechanics protected by polyvinyl alcohol sponge. Int J Damage Mech. doi:10.1177/1056789514535945

    Google Scholar 

  29. Karimi A, Navidbakhsh M, Razaghi R (2014) An experimental-finite element analysis on the kinetic energy absorption capacity of polyvinyl alcohol sponge. Mater Sci Eng, C 39:253–258. doi:10.1016/j.msec.2014.03.009

    Article  CAS  Google Scholar 

  30. Karimi A, Navidbakhsh M, Razaghi R, Haghpanahi M (2014) A computational fluid-structure interaction model for plaque vulnerability assessment in atherosclerotic human coronary arteries. J Appl Phys 115:144702. doi:10.1063/1.4870945

    Article  Google Scholar 

  31. Karimi A, Navidbakhsh M, Rezaee T, Hassani K (2014) Measurement of the circumferential mechanical properties of the umbilical vein: experimental and numerical analyses. Comput Methods Biomech Biomed Engin. doi:10.1080/10255842.2014.910513

    PubMed  Google Scholar 

  32. Karimi A, Navidbakhsh M, Shojaei A, Faghihi S (2013) Measurement of the uniaxial mechanical properties of healthy and atherosclerotic human coronary arteries. Mater Sci Eng, C 33:2550–2554. doi:10.1016/j.msec.2013.02.016

    Article  CAS  Google Scholar 

  33. Karimi A, Navidbakhsh M, Shojaei A, Hassani K, Faghihi S (2014) Study of plaque vulnerability in coronary artery using Mooney-Rivlin model: a combination of finite element and experimental method. Biomed Eng: Appl Basis Commun 26:145–152. doi:10.4015/S1016237214500136

    Google Scholar 

  34. Karimi A, Navidbakhsh M, Yamada H, Rezaee T, Hassani K (2014m) A comparative study on the quasilinear viscoelastic mechanical properties of umbilical artery and umbilical vein. Perfusion. doi:10.1177/0267659114536761

  35. Karimi A, Navidbakhsh M, Yousefi H, Alizadeh M (2014) An experimental study on the elastic modulus of gelatin hydrogel using different stress-strain definitions. J Thermoplast Compos Mater. doi:10.1177/0892705714533377

    Google Scholar 

  36. Karimi A, Navidbakhsh M, Yousefi H, Motevalli Haghi A, Adnani Sadati SJ (2014) Experimental and numerical study on the mechanical behavior of rat brain tissue. Perfusion. doi:10.1177/0267659114522088

    Google Scholar 

  37. Lally C, Dolan F, Prendergast P (2005) Cardiovascular stent design and vessel stresses: a finite element analysis. J Biomech 38:1574–1581. doi:10.1016/j.jbiomech.2004.07.022

    Article  CAS  PubMed  Google Scholar 

  38. Lally C, Reid A, Prendergast P (2004) Elastic behavior of porcine coronary artery tissue under uniaxial and equibiaxial tension. Annals Biomed Eng 32:1355–1364

    Article  CAS  Google Scholar 

  39. LaMuraglia GM, Southern JF, Fuster V, Kantor HL (1996) Magnetic resonance images lipid, fibrous, calcified, hemorrhagic, and thrombotic components of human atherosclerosis in vivo. Circulation 94:932–938. doi:10.1161/01.CIR.94.5.932

    Article  PubMed  Google Scholar 

  40. Lee RT, Grodzinsky AJ, Frank EH, Kamm RD, Schoen FJ (1991) Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83:1764–1770. doi:10.1161/01.CIR.83.5.1764

    Article  CAS  PubMed  Google Scholar 

  41. Li Z-Y, Howarth S, Trivedi RA (2006) Stress analysis of carotid plaque rupture based on in vivo high resolution MRI. J Biomech 39:2611–2622. doi:10.1016/j.jbiomech.2005.08.022

    Article  PubMed  Google Scholar 

  42. Liang D, Yang D, Qi M, Wang W (2005) Finite element analysis of the implantation of a balloon-expandable stent in a stenosed artery. Int J Cardiol 104:314–318

    Article  CAS  PubMed  Google Scholar 

  43. Loree HM, Grodzinsky AJ, Park SY, Gibson LJ, Lee RT (1994) Static circumferential tangential modulus of human atherosclerotic tissue. J Biomech 27:195–204

    Article  CAS  PubMed  Google Scholar 

  44. Martin AJ, Gotlieb AI, Henkelman RM (1995) High-resolution MR imaging of human arteries. J Magn Reson Imag 5:93–100. doi:10.1161/01.CIR.0000087480.94275.97

    Article  CAS  Google Scholar 

  45. Naghavi M, Libby P, Falk E, Casscells SW, Litovsky S, Rumberger J, Badimon JJ, Stefanadis C, Moreno P, Pasterkamp G (2003) From vulnerable plaque to vulnerable patient a call for new definitions and risk assessment strategies: part I. Circulation 108:1664–1672

    Article  PubMed  Google Scholar 

  46. Nair A, Kuban BD, Tuzcu EM, Schoenhagen P, Nissen SE, Vince DG (2002) Coronary plaque classification with intravascular ultrasound radiofrequency data analysis. Circulation 106:2200–2206. doi:10.1161/01.CIR.0000035654.18341.5E

    Article  PubMed  Google Scholar 

  47. Ogden RW (1997) Non-linear elastic deformations. Dover, New York

    Google Scholar 

  48. Ohayon J, Teppaz P, Finet G, Rioufol G (2001) In-vivo prediction of human coronary plaque rupture location using intravascular ultrasound and the finite element method. Coron Artery Dis 12:655–663

    Article  CAS  PubMed  Google Scholar 

  49. Palmaz JC (1992) Intravascular stenting: from basic research to clinical application. Cardiovasc Intervent Radiol 15:279–284

    Article  CAS  PubMed  Google Scholar 

  50. Pericevic I, Lally C, Toner D, Kelly DJ (2009) The influence of plaque composition on underlying arterial wall stress during stent expansion: the case for lesion-specific stents. Med Eng Phys 31:428–433. doi:10.1016/j.medengphy.2008.11.005

    Article  PubMed  Google Scholar 

  51. Salunke N, Topoleski L, Humphrey J, Mergner W (2001) Compressive stress-relaxation of human atherosclerotic plaque. J Biomed Mater Res 55:236–241. doi:10.1002/1097-4636(200105)55

    Article  CAS  PubMed  Google Scholar 

  52. Topoleski L, Salunke N, Humphrey J, Mergner W (1997) Composition-and history-dependent radial compressive behavior of human atherosclerotic plaque. J Biomed Mater Res 35:117–127. doi:10.1002/(SICI)1097-4636(199704)35

    Article  CAS  PubMed  Google Scholar 

  53. Wang W-Q, Liang D-K, Yang D-Z, Qi M (2006) Analysis of the transient expansion behavior and design optimization of coronary stents by finite element method. J Biomech 39:21–32. doi:10.1016/j.jbiomech.2004.11.003

    Article  PubMed  Google Scholar 

  54. Wu W, Wang W-Q, Yang D-Z, Qi M (2007) Stent expansion in curved vessel and their interactions: a finite element analysis. J Biomech 40:2580–2585. doi:10.1016/j.jbiomech.2006.11.009

    Article  PubMed  Google Scholar 

  55. Zahedmanesh H, Lally C (2009) Determination of the influence of stent strut thickness using the finite element method: implications for vascular injury and in-stent restenosis. Med Biol Eng Comput 47:385–393. doi:10.1007/s11517-009-0432-5

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the Iran University of Science and Technology for funding this project.

Conflict of interest

The authors declare that they have no conflicts of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahdi Navidbakhsh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karimi, A., Navidbakhsh, M., Yamada, H. et al. A nonlinear finite element simulation of balloon expandable stent for assessment of plaque vulnerability inside a stenotic artery. Med Biol Eng Comput 52, 589–599 (2014). https://doi.org/10.1007/s11517-014-1163-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11517-014-1163-9

Keywords

Navigation