Skip to main content
Log in

Changing Views of the Biomechanics of Vulnerable Plaque Rupture: A Review

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

This review examines changing perspectives on the biomechanics of vulnerable plaque rupture over the past 25 years from the first finite element analyses (FEA) showing that the presence of a lipid pool significantly increases the local tissue stress in the atheroma cap to the latest imaging and 3D FEA studies revealing numerous microcalcifications in the cap proper and a new paradigm for cap rupture. The first part of the review summarizes studies describing the role of the fibrous cap thickness, tissue properties, and lesion geometry as main determinants of the risk of rupture. Advantages and limitations of current imaging technologies for assessment of vulnerable plaques are also discussed. However, the basic paradoxes as to why ruptures frequently did not coincide with location of PCS and why caps >65 μm thickness could rupture at tissue stresses significantly below the 300 kPa critical threshold still remained unresolved. The second part of the review describes recent studies in the role of microcalcifications, their origin, shape, and clustering in explaining these unresolved issues including the actual mechanism of rupture due to the explosive growth of tiny voids (cavitation) in local regions of high stress concentration between closely spaced microinclusions oriented along their tensile axis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Aikawa, E., et al. Osteogenesis associates with inflammation in early-stage atherosclerosis evaluated by molecular imaging in vivo. Circulation 116(24):2841–2850, 2007.

    Article  CAS  PubMed  Google Scholar 

  2. Akyildiz, A. C., et al. Effects of intima stiffness and plaque morphology on peak cap stress. Biomed. Eng. Online 10:25, 2011.

    Article  PubMed Central  PubMed  Google Scholar 

  3. Barrett, S. R., M. P. Sutcliffe, S. Howarth, Z. Y. Li, and J. H. Gillard. Experimental measurement of the mechanical properties of carotid atherothrombotic plaque fibrous cap. J. Biomech. 42(11):1650–1655, 2009.

    Article  CAS  PubMed  Google Scholar 

  4. Bennett, M. R., G. I. Evan, and S. M. Schwartz. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaques. J. Clin. Invest. 95(5):2266–2274, 1995.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Berliner, J. A., et al. Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91(9):2488–2496, 1995.

    Article  CAS  PubMed  Google Scholar 

  6. Bluestein, D., et al. Influence of microcalcifications on vulnerable plaque mechanics using FSI modeling. J. Biomech. 41(5):1111–1118, 2008.

    Article  PubMed  Google Scholar 

  7. Bobryshev, Y. V., M. C. Killingsworth, R. S. Lord, and A. J. Grabs. Matrix vesicles in the fibrous cap of atherosclerotic plaque: possible contribution to plaque rupture. J. Cell Mol. Med. 12(5B):2073–2082, 2008.

    Article  CAS  PubMed  Google Scholar 

  8. Born, G. V. R., and P. D. Richardson. Mechanical properties of human atherosclerotic lesions. In: Pathology of the Human Atherosclerotic Plaque, edited by S. Glagov, W. P. Newman, and S. Shaffer. Berlin: Springer, 1989.

    Google Scholar 

  9. Born, G. V., and P. D. Richardson. A classic collaboration: Michael Davies on plaque vulnerability. Atherosclerosis 220(2):593–597, 2012.

    Article  CAS  PubMed  Google Scholar 

  10. Burke, A. P., et al. Coronary risk factors and plaque morphology in men with coronary disease who died suddenly. N. Engl. J. Med. 336(18):1276–1282, 1997.

    Article  CAS  PubMed  Google Scholar 

  11. Burke, A. P., et al. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA 281(10):921–926, 1999.

    Article  CAS  PubMed  Google Scholar 

  12. Burleigh, M. C., et al. Collagen types I and III, collagen content, GAGs and mechanical strength of human atherosclerotic plaque caps: span-wise variations. Atherosclerosis 96(1):71–81, 1992.

    Article  CAS  PubMed  Google Scholar 

  13. Cheng, G. C., H. M. Loree, R. D. Kamm, M. C. Fishbein, and R. T. Lee. Distribution of circumferential stress in ruptured and stable atherosclerotic lesions. A structural analysis with histopathological correlation. Circulation 87(4):1179–1187, 1993.

    Article  CAS  PubMed  Google Scholar 

  14. Choi, B. J., et al. Comparison of 64-slice multidetector computed tomography with spectral analysis of intravascular ultrasound backscatter signals for characterizations of noncalcified coronary arterial plaques. Am. J. Cardiol. 102(8):988–993, 2008.

    Article  PubMed  Google Scholar 

  15. Choudhury, R. P., V. Fuster, J. J. Badimon, E. A. Fisher, and Z. A. Fayad. MRI and characterization of atherosclerotic plaque: emerging applications and molecular imaging. Arterioscler. Thromb. Vasc. Biol. 22(7):1065–1074, 2002.

    Article  CAS  PubMed  Google Scholar 

  16. Claes, E., et al. Mechanical properties of human coronary arteries. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2010:3792–3795, 2010.

    CAS  PubMed  Google Scholar 

  17. Davies, M. J., P. D. Richardson, N. Woolf, D. R. Katz, and J. Mann. Risk of thrombosis in human atherosclerotic plaques: role of extracellular lipid, macrophage, and smooth muscle cell content. Br. Heart J. 69(5):377–381, 1993.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Davies, M. J., and T. Thomas. The pathological basis and microanatomy of occlusive thrombus formation in human coronary arteries. Philos. Trans. R. Soc. Lond. B Biol. Sci. 294(1072):225–229, 1981.

    Article  CAS  PubMed  Google Scholar 

  19. Davies, M. J., and A. C. Thomas. Plaque fissuring—the cause of acute myocardial infarction, sudden ischaemic death, and crescendo angina. Br. Heart J. 53(4):363–373, 1985.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. de Korte, C. L., E. I. Cespedes, A. F. van der Steen, G. Pasterkamp, and N. Bom. Intravascular ultrasound elastography: assessment and imaging of elastic properties of diseased arteries and vulnerable plaque. Eur. J. Ultrasound 7(3):219–224, 1998.

    Article  PubMed  Google Scholar 

  21. Demer, L. L. Vascular calcification and osteoporosis: inflammatory responses to oxidized lipids. Int. J. Epidemiol. 31(4):737–741, 2002.

    Article  PubMed  Google Scholar 

  22. Ebenstein, D. M., D. Coughlin, J. Chapman, C. Li, and L. A. Pruitt. Nanomechanical properties of calcification, fibrous tissue, and hematoma from atherosclerotic plaques. J. Biomed. Mater. Res. A 91(4):1028–1037, 2009.

    Article  PubMed  Google Scholar 

  23. Ebenstein, D. M., et al. Assessing structure–property relations of diseased tissues using nanoindentation and FTIR. In: Advanced Biomaterials: Characterization, Tissue Engineering, and Complexity, edited by S. Moss. Boston, MA: Materials Research Society, 2002, pp. 47–52.

    Google Scholar 

  24. Ehara, S., et al. Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110(22):3424–3429, 2004.

    Article  PubMed  Google Scholar 

  25. Finet, G., J. Ohayon, and G. Rioufol. Biomechanical interaction between cap thickness, lipid core composition and blood pressure in vulnerable coronary plaque: impact on stability or instability. Coron. Artery Dis. 15(1):13–20, 2004.

    Article  PubMed  Google Scholar 

  26. Fitzpatrick, L. A., A. Severson, W. D. Edwards, and R. T. Ingram. Diffuse calcification in human coronary arteries. Association of osteopontin with atherosclerosis. J. Clin. Invest. 94(4):1597–1604, 1994.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Gent, A. N. Detachment of an elastic matrix from a rigid spherical inclusion. J. Mater. Sci. 15(11):2884–2888, 1980.

    Article  Google Scholar 

  28. Gent, A. N., and B. Park. Failure processes in elastomers at or near a rigid spherical inclusion. J. Mater. Sci. 19(6):1947–1956, 1984.

    Article  CAS  Google Scholar 

  29. Goodier, J. N. Concentration of stress around spherical and cylindrical inclusion and flaws. Trans. ASME 55:39–44, 1933.

    Google Scholar 

  30. Holzapfel, G. A., G. Sommer, C. T. Gasser, and P. Regitnig. Determination of layer-specific mechanical properties of human coronary arteries with nonatherosclerotic intimal thickening and related constitutive modeling. Am. J. Physiol. Heart Circ. Physiol. 289(5):H2048–2058, 2005.

    Article  CAS  PubMed  Google Scholar 

  31. Holzapfel, G. A., G. Sommer, and P. Regitnig. Anisotropic mechanical properties of tissue components in human atherosclerotic plaques. J. Biomech. Eng. 126(5):657–665, 2004.

    Article  PubMed  Google Scholar 

  32. Hoshino, T., et al. Mechanical stress analysis of a rigid inclusion in distensible material: a model of atherosclerotic calcification and plaque vulnerability. Am. J. Physiol. Heart Circ. Physiol. 297(2):H802–H810, 2009.

    Article  CAS  PubMed  Google Scholar 

  33. Hsu, H. H., and N. P. Camacho. Isolation of calcifiable vesicles from human atherosclerotic aortas. Atherosclerosis 143(2):353–362, 1999.

    Article  CAS  PubMed  Google Scholar 

  34. Huang, H., et al. The impact of calcification on the biomechanical stability of atherosclerotic plaques. Circulation 103(8):1051–1056, 2001.

    Article  CAS  PubMed  Google Scholar 

  35. Isner, J. M., M. Kearney, S. Bortman, and J. Passeri. Apoptosis in human atherosclerosis and restenosis. Circulation 91(11):2703–2711, 1995.

    Article  CAS  PubMed  Google Scholar 

  36. Kelly-Arnold, A., et al. A revised microcalcification hypothesis for fibrous cap rupture in human coronary arteries. Proc. Nat. Acad. Sci. U.S.A. 110(26):10741–10746, 2013.

    Google Scholar 

  37. Knollmann, F., et al. Quantification of atherosclerotic coronary plaque components by submillimeter computed tomography. Int. J. Cardiovasc. Imaging 24(3):301–310, 2008.

    Article  PubMed  Google Scholar 

  38. Kolodgie, F. D., et al. Intraplaque hemorrhage and progression of coronary atheroma. N. Engl. J. Med. 349(24):2316–2325, 2003.

    Article  CAS  PubMed  Google Scholar 

  39. Kopp, A. F., et al. Non-invasive characterisation of coronary lesion morphology and composition by multislice CT: first results in comparison with intracoronary ultrasound. Eur. Radiol. 11(9):1607–1611, 2001.

    Article  CAS  PubMed  Google Scholar 

  40. Kural, M. H., et al. Planar biaxial characterization of diseased human coronary and carotid arteries for computational modeling. J. Biomech. 45(5):790–798, 2012.

    Article  PubMed Central  PubMed  Google Scholar 

  41. Larose, E., et al. Characterization of human atherosclerotic plaques by intravascular magnetic resonance imaging. Circulation 112(15):2324–2331, 2005.

    Article  PubMed  Google Scholar 

  42. Larose, E., et al. Improved characterization of atherosclerotic plaques by gadolinium contrast during intravascular magnetic resonance imaging of human arteries. Atherosclerosis 196(2):919–925, 2008.

    Article  CAS  PubMed  Google Scholar 

  43. Lawlor, M. G., M. R. O’Donnell, B. M. O’Connell, and M. T. Walsh. Experimental determination of circumferential properties of fresh carotid artery plaques. J. Biomech. 44(9):1709–1715, 2011.

    Article  PubMed  Google Scholar 

  44. Leach, J. R., et al. Carotid atheroma rupture observed in vivo and FSI-predicted stress distribution based on pre-rupture imaging. Ann. Biomed. Eng. 38(8):2748–2765, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  45. Lee, R. T., A. J. Grodzinsky, E. H. Frank, R. D. Kamm, and F. J. Schoen. Structure-dependent dynamic mechanical behavior of fibrous caps from human atherosclerotic plaques. Circulation 83(5):1764–1770, 1991.

    Article  CAS  PubMed  Google Scholar 

  46. Lee, R. T., et al. Prediction of mechanical properties of human atherosclerotic tissue by high-frequency intravascular ultrasound imaging. An in vitro study. Arterioscler. Thromb. 12(1):1–5, 1992.

    Article  CAS  PubMed  Google Scholar 

  47. Lendon, C. L., A. D. Briggs, G. V. R. Born, M. C. Burleigh, and M. J. Davies. Mechanical testing of connective-tissue in the search for determinants of atherosclerotic plaque cap rupture. Biochem. Soc. Trans. 16(6):1032–1033, 1988.

    Google Scholar 

  48. Lendon, C. L., M. J. Davies, G. V. Born, and P. D. Richardson. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis 87(1):87–90, 1991.

    Article  CAS  PubMed  Google Scholar 

  49. Lendon, C. L., M. J. Davies, P. D. Richardson, and G. V. R. Born. Testing of small connective-tissue specimens for the determination of the mechanical-behavior of atherosclerotic plaques. J. Biomed. Eng. 15(1):27–33, 1993.

    Article  CAS  PubMed  Google Scholar 

  50. Loree, H. M., A. J. Grodzinsky, S. Y. Park, L. J. Gibson, and R. T. Lee. Static circumferential tangential modulus of human atherosclerotic tissue. J. Biomech. 27(2):195–204, 1994.

    Article  CAS  PubMed  Google Scholar 

  51. Loree, H. M., R. D. Kamm, R. G. Stringfellow, and R. T. Lee. Effects of fibrous cap thickness on peak circumferential stress in model atherosclerotic vessels. Circ. Res. 71(4):850–858, 1992.

    Article  CAS  PubMed  Google Scholar 

  52. Maehara, A., et al. Morphologic and angiographic features of coronary plaque rupture detected by intravascular ultrasound. J. Am. Coll. Cardiol. 40(5):904–910, 2002.

    Article  PubMed  Google Scholar 

  53. Maher, E., et al. Tensile and compressive properties of fresh human carotid atherosclerotic plaques. J. Biomech. 42(16):2760–2767, 2009.

    Article  PubMed  Google Scholar 

  54. Maldonado, N., A. Kelly-Arnold, L. Cardoso, and S. Weinbaum. The explosive growth of small voids in vulnerable cap rupture; cavitation and interfacial debonding. J. Biomech. 46(2):396–401, 2013.

    Article  PubMed  Google Scholar 

  55. Maldonado, N., et al. A mechanistic analysis of the role of microcalcifications in atherosclerotic plaque stability: potential implications for plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 303(5):H619–H628, 2012.

    Article  CAS  PubMed  Google Scholar 

  56. Moreno, P. R., et al. Detection of lipid pool, thin fibrous cap, and inflammatory cells in human aortic atherosclerotic plaques by near-infrared spectroscopy. Circulation 105(8):923–927, 2002.

    Article  PubMed  Google Scholar 

  57. Motoyama, S., et al. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J. Am. Coll. Cardiol. 50(4):319–326, 2007.

    Article  PubMed  Google Scholar 

  58. Nasu, K., et al. Accuracy of in vivo coronary plaque morphology assessment: a validation study of in vivo virtual histology compared with in vitro histopathology. J. Am. Coll. Cardiol. 47(12):2405–2412, 2006.

    Article  PubMed  Google Scholar 

  59. New, S. E. P., and E. Aikawa. Molecular imaging insights into early inflammatory stages of arterial and aortic valve calcification. Circ. Res. 108(11):1381–1391, 2011.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Ohayon, J., G. Finet, F. Treyve, G. Rioufol, and O. Dubreuil. A three-dimensional finite element analysis of stress distribution in a coronary atherosclerotic plaque: in-vivo prediction of plaque rupture location. Biomech. Appl. Comput. Assist. Surg. 661:225–241, 2005.

    Google Scholar 

  61. Ohayon, J., et al. Influence of residual stress/strain on the biomechanical stability of vulnerable coronary plaques: potential impact for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 293(3):H1987–H1996, 2007.

    Article  CAS  PubMed  Google Scholar 

  62. Ohayon, J., et al. Necrotic core thickness and positive arterial remodeling index: emergent biomechanical factors for evaluating the risk of plaque rupture. Am. J. Physiol. Heart Circ. Physiol. 295(2):H717–H727, 2008.

    Article  CAS  PubMed  Google Scholar 

  63. Patwari, P., et al. Assessment of coronary plaque with optical coherence tomography and high-frequency ultrasound. Am. J. Cardiol. 85(5):641–644, 2000.

    Article  CAS  PubMed  Google Scholar 

  64. Potkin, B. N., et al. Coronary artery imaging with intravascular high-frequency ultrasound. Circulation 81(5):1575–1585, 1990.

    Article  CAS  PubMed  Google Scholar 

  65. Rambhia, S. H., et al. Microcalcifications increase coronary vulnerable plaque rupture potential: a patient-based micro-CT fluid–structure interaction study. Ann. Biomed. Eng. 40(7):1443–1454, 2012.

    Article  CAS  PubMed  Google Scholar 

  66. Richardson, P. D., M. J. Davies, and G. V. Born. Influence of plaque configuration and stress distribution on fissuring of coronary atherosclerotic plaques. Lancet 2(8669):941–944, 1989.

    Article  CAS  PubMed  Google Scholar 

  67. Rodriguez-Granillo, G. A., et al. In vivo intravascular ultrasound-derived thin-cap fibroatheroma detection using ultrasound radiofrequency data analysis. J. Am. Coll. Cardiol. 46(11):2038–2042, 2005.

    Article  PubMed  Google Scholar 

  68. Russell, 3rd, R. R., and B. L. Zaret. Nuclear cardiology: present and future. Curr. Probl. Cardiol. 31(9):557–629, 2006.

    Article  PubMed  Google Scholar 

  69. Schaar, J. A., et al. Characterizing vulnerable plaque features with intravascular elastography. Circulation 108(21):2636–2641, 2003.

    Article  PubMed  Google Scholar 

  70. Sinusas, A. J. Molecular imaging in nuclear cardiology: translating research concepts into clinical applications. Q. J. Nucl. Med. Mol. Imaging 54(2):230–240, 2010.

    CAS  PubMed  Google Scholar 

  71. Sommer, G., P. Regitnig, L. Koltringer, and G. A. Holzapfel. Biaxial mechanical properties of intact and layer-dissected human carotid arteries at physiological and supraphysiological loadings. Am. J. Physiol. Heart Circ. Physiol. 298(3):H898–912, 2010.

    Article  CAS  PubMed  Google Scholar 

  72. Stary, H. C. The development of calcium deposits in atherosclerotic lesions and their persistence after lipid regression. Am. J. Cardiol. 88(2A):16e–19e, 2001.

    Article  CAS  PubMed  Google Scholar 

  73. Stary, H. C. Atlas of Atherosclerosis: Progression and Regression (2nd ed.). The Encyclopedia of Visual Medicine Series. Boca Raton: The Parthenon Publishing Group, CRC Press, 144 pp., 2003.

  74. Strauss, H. W., R. K. Grewal, and N. Pandit-Taskar. Molecular imaging in nuclear cardiology. Semin. Nucl. Med. 34(1):47–55, 2004.

    Article  PubMed  Google Scholar 

  75. Tanaka, A., et al. Morphology of exertion-triggered plaque rupture in patients with acute coronary syndrome: an optical coherence tomography study. Circulation 118(23):2368–2373, 2008.

    Article  PubMed  Google Scholar 

  76. Tang, D., C. Yang, S. Kobayashi, and D. N. Ku. Effect of a lipid pool on stress/strain distributions in stenotic arteries: 3-D fluid–structure interactions (FSI) models. J. Biomech. Eng. 126(3):363–370, 2004.

    Article  PubMed  Google Scholar 

  77. Tang, D., et al. Local maximal stress hypothesis and computational plaque vulnerability index for atherosclerotic plaque assessment. Ann. Biomed. Eng. 33(12):1789–1801, 2005.

    Article  PubMed Central  PubMed  Google Scholar 

  78. Tarbell, J. M. Shear stress and the endothelial transport barrier. Cardiovasc. Res. 87(2):320–330, 2010.

    Article  CAS  PubMed  Google Scholar 

  79. Teng, Z., D. Tang, J. Zheng, P. K. Woodard, and A. H. Hoffman. An experimental study on the ultimate strength of the adventitia and media of human atherosclerotic carotid arteries in circumferential and axial directions. J. Biomech. 42(15):2535–2539, 2009.

    Article  PubMed Central  PubMed  Google Scholar 

  80. Teng, Z., et al. 3D critical plaque wall stress is a better predictor of carotid plaque rupture sites than flow shear stress: an in vivo MRI-based 3D FSI study. J. Biomech. Eng. 132(3):031007, 2010.

    Article  PubMed Central  PubMed  Google Scholar 

  81. Tsimikas, S., and P. X. Shaw. Non-invasive imaging of vulnerable plaques by molecular targeting of oxidized LDL with tagged oxidation-specific antibodies. J. Cell. Biochem. Suppl. 39:138–146, 2002.

    Article  PubMed  Google Scholar 

  82. Vengrenyuk, Y., L. Cardoso, and S. Weinbaum. Micro-CT based analysis of a new paradigm for vulnerable plaque rupture: cellular microcalcifications in fibrous caps. Mol. Cell. Biomech. 5(1):37–47, 2008.

    PubMed  Google Scholar 

  83. Vengrenyuk, Y., T. J. Kaplan, L. Cardoso, G. J. Randolph, and S. Weinbaum. Computational stress analysis of atherosclerotic plaques in ApoE knockout mice. Ann. Biomed. Eng. 38(3):738–747, 2010.

    Article  PubMed  Google Scholar 

  84. Vengrenyuk, Y., et al. A hypothesis for vulnerable plaque rupture due to stress-induced debonding around cellular microcalcifications in thin fibrous caps. Proc. Nat. Acad. Sci. U.S.A. 103(40):14678–14683, 2006.

    Article  CAS  Google Scholar 

  85. Virmani, R., A. P. Burke, F. D. Kolodgie, and A. Farb. Pathology of the thin-cap fibroatheroma: a type of vulnerable plaque. J. Interv. Cardiol. 16(3):267–272, 2003.

    Article  PubMed  Google Scholar 

  86. Virmani, R., J. Narula, M. Leon, and J. T. E. Willerson. The Vulnerable Atherosclerotic Plaque: Strategies for Diagnosis and Management. Malden, MA: Blackwell, 2007.

    Google Scholar 

  87. Wenk, J. F. Numerical modeling of stress in stenotic arteries with microcalcifications: a parameter sensitivity study. J. Biomech. Eng. 133(1):014503, 2011.

    Article  PubMed  Google Scholar 

  88. Yabushita, H., et al. Characterization of human atherosclerosis by optical coherence tomography. Circulation 106(13):1640–1645, 2002.

    Article  PubMed  Google Scholar 

  89. Yang, F., et al. Segmentation of wall and plaque in in vitro vascular MR images. Int. J. Cardiovasc. Imaging 19(5):419–428, 2003.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research has been supported by NIH ARRA grant RCI HL101151 to SW, AG034198, NSF MRI 0723027, 1229449, and PSC CUNY award to LC.

Conflict of interest

The authors have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sheldon Weinbaum.

Additional information

Associate Editor Robert Nerem oversaw the review of this article.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardoso, L., Weinbaum, S. Changing Views of the Biomechanics of Vulnerable Plaque Rupture: A Review. Ann Biomed Eng 42, 415–431 (2014). https://doi.org/10.1007/s10439-013-0855-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-013-0855-x

Keywords

Navigation