Skip to main content
Log in

Recent development in structural design and optimization

  • Review
  • Published:
Acta Mechanica Sinica Aims and scope Submit manuscript

Abstract

With the fast development of computational mechanics and the capacity as well as the speed of modern computers, simulation-based structural optimization has become an indispensable tool in the design process of competitive products. This paper presents a brief description of the current status of structural optimization by reviewing some significant progress made in the last decades. Potential research topics are also discussed. The entire literatures of the field are not covered due to the limitation of the length of paper. The scope of this review is limited and closely related to the authors’ own research interests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Michell A.G.M.: The limits of economy of materials in frame structures. Philos. Mag. Ser. 6 8(47), 589–597 (1904)

    Article  Google Scholar 

  2. Eshenauer H.A., Olhoff N.: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 332–390 (2001)

    Google Scholar 

  3. Bendsoe M.P., Sigmund O.: Topology Optimization-Theory, Methods and Applications. Springer, Berlin (2003)

    Google Scholar 

  4. Cheng K.T., Olhoff N.: An investigation concerning optimal design of solid elastic plates. Int. J. Solids Struct. 17, 305–323 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bendsoe M.P., Kikuchi N.: Generating optimal topologies in structural design using a homogenization method. Comput. Methods Appl. Mech. Eng. 71, 197–224 (1988)

    Article  MathSciNet  Google Scholar 

  6. Bendsore M.P.: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202 (1989)

    Article  Google Scholar 

  7. Rozvany G.I.N., Zhou M., Birker T.: Generalized shape optimization without homogenization. Struct. Optim. 4, 250–252 (1992)

    Article  Google Scholar 

  8. Zhou M., Rozvany G.I.N.: The COC algorithm, Part II: Topological, geometrical and generalized shape optimization. Comput. Methods Appl. Mech. Eng. 89, 309–336 (1991)

    Article  Google Scholar 

  9. Diaz A., Sigmund O.: Checkerboard patterns in layout optimization. Struct. Multidisc. Optim. 10, 40–45 (1995)

    Google Scholar 

  10. Petersson J.: A finite element analysis of optimal variable thickness sheet. SIAM J. Numer. Anal. 36, 1759–1778 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  11. Sigmund O.: Materials with prescribed constitutive parameters: an inverse homogenization problem. Int. J. Solids Struct. 31, 2313–2329 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Sigmund O.: On the design of compliant mechanisms using topology optimization. Mech. Struct. Mach. 25, 495–526 (1997)

    Google Scholar 

  13. Bourdin B.: Filters in topology optimization. Int. J. Numer. Methods Eng. 50, 2143–2158 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  14. Guo X., Gu Y.X.: A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng. Comput. 21, 9–22 (2004)

    Article  MATH  Google Scholar 

  15. Wang M.Y., Wang S.: Bilateral filtering for structural topology optimization. Int. J. Numer. Methods Eng. 63, 1911–1938 (2005)

    Article  MATH  Google Scholar 

  16. Borrvall T., Petersson J.: Topology optimization using regularized intermediate density control. Comput. Methods Appl. Mech. Eng. 190, 4911–4928 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  17. Zhou J.X., Zou W.: Meshless approximation combined with implicit topology description for optimization of continua. Struct. Multidisc. Optim. 36, 347–353 (2008)

    Article  MATH  Google Scholar 

  18. Zheng J., Long S.Y., Li G.Y.: The topology optimization design for continuum structures based on the element free Galerkin method. Eng. Anal. Bound. Elem. 34, 666–672 (2010)

    Article  MathSciNet  Google Scholar 

  19. Guest J., Prevost J., Belytschko T.: Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int. J. Numer. Methods Eng. 61, 238–254 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  20. Sigmund O.: Morphology-based black and white filters scheme for topology optimization. Struct. Multidisc. Optim. 33, 401–424 (2007)

    Article  Google Scholar 

  21. Xu S.L., Cai Y.W., Cheng G.D.: Volume preserving nonlinear density filter based on Heaviside functions. Struct. Multidisc. Optim. 41, 495–505 (2010)

    Article  MathSciNet  Google Scholar 

  22. Qian Z.Y., Ananthasuresh G.K.: Optimal embedding of rigid objects in the topology design of structures. Mech. Des. Struct. Mach. 32, 165–193 (2004)

    Article  Google Scholar 

  23. Zhu J.H., Zhang W.H., Beckers P. et al.: Simultaneous design of components layout and supporting structures using coupled shape and topology optimization technique. Struct. Multidisc. Optim. 36, 29–41 (2008)

    Article  MathSciNet  Google Scholar 

  24. Zhu J.H., Zhang W.H., Beckers P.: Integrated layout design of multi-component system. Int. J. Numer. Methods Eng. 78, 631–651 (2009)

    Article  MATH  Google Scholar 

  25. Kumar A.V., Gossard D.C.: Synthesis of optimal shape and topology of structures. J. Mech. Des. 118, 68–74 (1996)

    Article  Google Scholar 

  26. Sethian J.A., Wiegmann A.: Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163, 489–528 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  27. Osher S.J., Santosa F.: Level set methods for optimization problems involving geometry and constraints I. Frequency of a two density homogeneous drum. J. Comput. Phys. 171, 272–298 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  28. Wang M.Y., Wang X.M., Guo D.M.: A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192, 227–246 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  29. Allaire G., Jouve F., Toader A.M.: Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194, 363–393 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  30. Wang M.Y., Wang X.M.: “Color” level sets: a multi-phase level set method for structural topology optimization with multiple materials. Comput. Methods Appl. Mech. Eng. 193, 469–496 (2004)

    Article  MATH  Google Scholar 

  31. Allaire G., Jouve F.: A level-set method for vibration and multiple loads structural optimization. Comput. Methods Appl. Mech. Eng. 194, 3269–3290 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  32. Amstutz S., Andrä H.: A new algorithm for topology optimization using a level-set method. J. Comput. Phys. 216, 573–588 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  33. Cho S., Ha S.H., Park C.Y.: Topological shape optimization of power flow problems at high frequencies using level set approach. Int. J. Solids Struct. 43, 172–192 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Wei P., Wang M.Y.: Piecewise constant level set method for structural topology optimization. Int. J. Numer. Methods Eng. 78, 379–402 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  35. Rong J.H., Liang Q.Q.: A level set method for topology optimization of continuum structures with bounded design domains. Comput. Methods Appl. Mech. Eng. 197, 1447–1465 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  36. Yamasaki S., Nishiwaki S., Yamda T. et al.: A structural optimization method based on the level set method using a new geometry-based re-initialization scheme. Int. J. Numer. Methods Eng. 83, 1580–1624 (2010)

    Article  MATH  Google Scholar 

  37. Eschenauer H.A., Kobelev V.V., Schumacher A.: Bubble method for topology and shape optimization of structures. Struct. Optim. 8, 42–51 (1994)

    Article  Google Scholar 

  38. Sokolowski J., Zochowski A.: On the topological derivative in shape optimization. SIAM J. Control Optim. 37, 1251–1272 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  39. Cea J., Garreau S., Guillaume P. et al.: The shape and topological optimizations connection. Comput. Methods Appl. Mech. Eng. 188, 713–726 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  40. Novotny A.A., Feijoo R.A., Taroco E. et al.: Topological-shape sensitivity analysis. Comput. Methods Appl. Mech. Eng. 192, 803–829 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  41. Lewinski T., Sokolowski J.: Energy change due to the appearance of cavities in elastic solids. Int. J. Solids Struct. 40, 1765–1803 (2003)

    Article  MATH  Google Scholar 

  42. Allaire G., Gournay F., Jouve F. et al.: Structural optimization using topological and shape sensitivity via a level set method. Control Cybern. 34, 59–80 (2005)

    MATH  Google Scholar 

  43. Berger M., Hackl B., Ring W.: Incorporating topological derivatives into level set methods. J. Comput. Phys. 194, 344–362 (2004)

    Article  MathSciNet  Google Scholar 

  44. Guo X., Zhao K., Wang M.Y.: A new approach for simultaneous shape and topology optimization based on dynamic implicit surface function. Control Cybern. 34, 255–282 (2005)

    MATH  MathSciNet  Google Scholar 

  45. Gibson L.J., Ashby M.F.: Cellular Solids: Structure and Properties. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  46. Rodrigues H., Guedes J.M., Bendsoe M.P.: Hierarchical optimization of material and structure. Struct. Multidisc. Optim. 24, 1–10 (2002)

    Article  Google Scholar 

  47. Coelho P.G., Fernandes P.R., Guedes J.M.: A hierarchical model for concurrent material and topology optimization of three -dimensional structures. Struct. Multidisc. Optim. 35, 107–115 (2008)

    Article  Google Scholar 

  48. Liu L., Yan J., Cheng G.D.: Optimum structure with homogeneous optimum truss-like material. Comput. Struct. 86, 1417–1425 (2008)

    Article  Google Scholar 

  49. Yan J., Cheng G.D., Liu L.: A uniform optimum material based model for concurrent optimization of thermoelastic structures and materials. Int. J. Simul. Multidisc. Des. Optim. 2, 259–266 (2008)

    Article  Google Scholar 

  50. Liu S.T., Su W.Z.: Topology optimization of couple-stress material structures. Struct. Multidisc. Optim. 40, 319–327 (2010)

    Article  MathSciNet  Google Scholar 

  51. Niu B., Yan J., Cheng G.D.: Optimum structure with homogeneous optimum cellular material for maximum fundamental frequency. Struct. Multidisc. Optim. 39, 115–132 (2009)

    Article  Google Scholar 

  52. Chellappa S., Diaz A.R., Bendsøe M.P.: Layout optimization of structures with finite-sized features using multiresolution analysis. Struct. Multidisc. Optim. 26, 77–91 (2004)

    Article  Google Scholar 

  53. Zhou K.M., Li X.: Topology optimization for minimum compliance under multiple loads based on continuous distribution of members. Struct. Multidisc. Optim. 37, 49–56 (2008)

    Article  Google Scholar 

  54. Royset J.O., Der Kiureghian A., Polak E.: Reliability-based optimal design of series structural systems. J. Eng. Mech. ASCE 127, 607–614 (2001)

    Article  Google Scholar 

  55. Choi K.K., Tu J., Park Y.H.: Extensions of design potential concept for reliability-based design optimization to nonsmooth and extreme cases. Struct. Multidisc. Optim. 22, 335–350 (2001)

    Article  Google Scholar 

  56. Jung D.H., Lee B.C.: Development of a simple and efficient method for robust optimization. Int. J. Numer. Methods Eng. 53, 2201–2215 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  57. Papadrakakis M., Lagaros N.D.: Reliability-based structural optimization using neural networks and Monte-Carlo simulation. Comput. Methods Appl. Mech. Eng. 191, 3491–3507 (2002)

    Article  MATH  Google Scholar 

  58. Kharmanda G., Olhoff N., Mohamed A. et al.: Reliability-based topology optimization. Struct. Multidisc. Optim. 26, 295–307 (2004)

    Article  Google Scholar 

  59. Lee K.H., Park G.J.: Robust optimization considering tolerances of design variables. Comput. Struct. 79, 77–86 (2001)

    Article  Google Scholar 

  60. Sandgren E., Cameron T.M.: Robust design optimization of structures through consideration of variation. Comput. Struct. 80, 1605–1613 (2002)

    Article  Google Scholar 

  61. Lee K.H., Park G.J.: Robust optimization in discrete design space for constrained problems. AIAA J. 40, 774–780 (2002)

    Article  Google Scholar 

  62. Valdebenito M.A., Schuëller G.I.: A survey on approaches for reliability-based optimization. Struct. Multidisc. Optim. 42, 645–663 (2010)

    Article  Google Scholar 

  63. Tu J., Choi K., Park Y.: Design potential method for robust system parameter design. AIAA J. 39, 667–677 (2001)

    Article  Google Scholar 

  64. Lee I., Choi K., Du L. et al.: Inverse analysis method using MPP-based dimension reduction for reliability-based design optimization of nonlinear and multi-dimensional systems. Comput. Methods Appl. Mech. Eng. 198, 14–27 (2008)

    Article  MATH  Google Scholar 

  65. Agarwal H., Mozumder C., Renaud J. et al.: An inverse-measure-based unilevel architecture for reliability-based design. Struct. Multidisc. Optim. 33, 217–227 (2007)

    Article  Google Scholar 

  66. Kharmanda G., Mohamed A., Lemaire M.: Efficient reliabilitybased design optimization using a hybrid space with application to finite element analysis. Struct. Multidisc. Optim. 24, 233–245 (2002)

    Article  Google Scholar 

  67. Kaymaz I., Marti K.: Reliability-based design optimization for elastoplastic mechanical structures. Comput. Struct. 85, 615–625 (2007)

    Article  MathSciNet  Google Scholar 

  68. Liang J., Mourelatos Z., Tu J.: A single-loop method for reliability-based design optimisation. Int. J. Prod. Dev. 5, 76–92 (2008)

    Article  Google Scholar 

  69. Du X., Chen W.: Sequential optimization and reliability assessment method for efficient probabilistic design. J. Mech. Des. 126, 225–233 (2004)

    Article  Google Scholar 

  70. Cheng G.D., Xu L., Jiang L.: A sequential approximate programming strategy for reliability-based structural optimization. Comput. Struct. 84, 1353–1367 (2006)

    Article  Google Scholar 

  71. Yi P., Cheng G.D., Jiang L.: A sequential approximate programming strategy for performance-measure-based probabilistic structural design optimization. Struct. Saf. 30, 91–109 (2008)

    Article  Google Scholar 

  72. Chan K.Y., Skerlos S., Papalambros P.: An adaptive sequential linear programming algorithm for optimal design problems with probabilistic constraints. J. Mech. Des. 129, 140–149 (2007)

    Article  Google Scholar 

  73. Aoues Y., Chateauneuf A.: Benchmark study of numerical methods for reliability-based design optimization. Struct. Multidisc. Optim. 41, 277–294 (2010)

    Article  MathSciNet  Google Scholar 

  74. Ganzerli S., Pantelides C.P.: Optimum structural design via convex model superposition. Comput. Struct. 74, 639–647 (2000)

    Article  Google Scholar 

  75. Au F.T.K., Cheng Y.S., Tham L.G. et al.: Robust design of structures using convex models. Comput. Struct. 81, 2611–2619 (2003)

    Article  Google Scholar 

  76. Belegundu A.D., Chandrupatla T.R.: Optimization Concepts and Applications in Engineering. Prentice-Hall, New Jersey (1999)

    MATH  Google Scholar 

  77. Cao H.J., Duan B.Y.: A study on non-probabilistic reliability-based structural optimization (in Chinese). Chin. J. Appl. Mech. 22, 381–385 (2005)

    Google Scholar 

  78. Gurav S.P., Goosen J.F.L., VanKeulen F.: Bounded-but -unknown uncertainty optimization using design sensitivities and parallel computing: application to MEMS. Comput. Struct. 83, 1134–1149 (2005)

    Article  Google Scholar 

  79. Kang Z., Luo Y.J.: Non-probabilistic reliability-based topology optimization of geometrically nonlinear structures using convex models. Comput. Methods Appl. Mech. Eng. 198, 3228–3238 (2009)

    Article  MathSciNet  Google Scholar 

  80. Kanno Y., Takewaki I.: Sequential semidefinite program for maximum robustness design of structures under load uncertainty. J. Optimiz. Theory App. 130, 265–287 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  81. Guo X., Bai W., Zhang W.S. et al.: Confidence structural robust design and optimization under stiffness and load uncertainties. Comput. Methods Appl. Mech. Eng. 198, 3378–3399 (2009)

    Article  MathSciNet  Google Scholar 

  82. Guo, X., Du, J.M., Gao, X.X.: Confidence structural robust optimization by nonlinear semidefinite programming based single-level formulation. Int. J. Numer. Methods Eng. doi:10.1002/nme.3083 (2010)

  83. Chen S.H., Wu J., Yu Y.D. et al.: Interval optimization for uncertain structures. Finite Elem. Anal. Des. 40, 1379–1398 (2004)

    Article  Google Scholar 

  84. Jiang C., Han X., Liu G.R.: A sequential nonlinear interval number programming method for uncertain structures. Comput. Methods Appl. Mech. Eng. 197, 4250–4265 (2008)

    Article  MATH  Google Scholar 

  85. Jiang C., Han X., Liu G.R.: Optimization of structures with uncertain constraints based on convex model and satisfaction degree of interval. Comput. Methods Appl. Mech. Eng. 196, 4791–4800 (2007)

    Article  MATH  Google Scholar 

  86. Qiu Z.P.: Convex models and interval analysis method to predict the effect of uncertain-but-bounded parameters on the buckling of composite structures. Comput. Methods Appl. Mech. Eng. 194, 2175–2189 (2005)

    Article  MATH  Google Scholar 

  87. Qiu Z.P., Wang X.J., Chen J.Y.: Exact bounds for the static response set of structures with uncertain-but-bounded parameters. Int. J. Solids Struct. 43, 6574–6593 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  88. Kanno Y., Takewaki I.: Semidefinite programming for uncertain linear equations in static analysis of structures. Comput. Methods Appl. Mech. Eng. 198, 102–115 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  89. Kanno Y., Takewaki I.: Semidefinite programming for dynamic steady-state analysis of structures under uncertain harmonic loads. Comput. Methods Appl. Mech. Eng. 198, 3239–3261 (2009)

    Article  MathSciNet  Google Scholar 

  90. Guo X., Bai W., Zhang W.S.: Extreme structural response analysis of truss structures under material uncertainty via linear mixed 0-1 programming. Int. J. Numer. Methods Eng. 76, 253–277 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  91. Du J., Olhoff N.: Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct. Multidisc. Optim. 33, 305–321 (2007)

    Article  MathSciNet  Google Scholar 

  92. Liu B.S., Zhao G.Z., Li A.: PEM based sensitivity analysis for acoustic radiation problems of random responses. J. Vib. Acoust. 132, 021012 (2010)

    Article  Google Scholar 

  93. Wang B., Cheng G.D., Jiang L.: Design of multi-tubular heat exchanger for optimum efficiency of heat dissipation. Eng. Optimiz. 40, 767–788 (2008)

    Article  Google Scholar 

  94. Veselago V.G.: The electrodynamics of substances with simultaneously negative value of ε and μ. Sov. Phys. Usp. 10, 509–514 (1968)

    Article  Google Scholar 

  95. Xu W.K., Liu S.T., Dong Y.Z.: Design of structural left-handed material based on topology optimization. J. Wuhan Univ. Tech. Mater. Sci. Ed. 25, 282–286 (2010)

    Article  Google Scholar 

  96. Diaz A., Sigmund O.: A topology optimization method for design of negative permeability metamaterials. Struct. Multidisc. Optim. 43, 163–177 (2010)

    Article  MathSciNet  Google Scholar 

  97. Sigmund O., Jensen J.S.: Systematic design of phononic band gap materials and structures by topology optimization. Philos. Trans. R. Soc. Lond. A 361, 1001–1019 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  98. Duhring M.B., Sigmund O., Feurer T.: Design of photonic band gap fibers by topology optimization. J. Opt. Soc. Am. B 27, 51–58 (2010)

    Article  Google Scholar 

  99. Jensen J.S., Sigmund O.: Topology optimization of photonic crystal structures: a high-bandwidth low-loss T-junction waveguide. J. Opt. Soc. Am. B 22, 1191–1198 (2005)

    Article  Google Scholar 

  100. Stainko R., Sigmund O.: Tailoring dispersion properties of photonic crystal waveguides by topology optimization. Wave Random Complex 17, 477–489 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  101. De Dood M.J.A., Snoeks E., Moroz A., Polman A.: Design and optimization of 2D photonic crystal waveguides based on silicon. Opt. Quant. Electron. 34, 145–159 (2002)

    Article  Google Scholar 

  102. Diaz A., Haddow A.G., Ma L.: Design of band-gap grid structures. Struct. Multidisc. Optim. 29, 418–431 (2005)

    Article  Google Scholar 

  103. Guenneau S., Movchan A., Pétursson G., Ramakrishna S.A.: Acoustic metamaterials for sound focusing and confinement. New J. Phys. 9, 399–406 (2007)

    Article  Google Scholar 

  104. Laude V., Khelif A., Benchabane S., Wilm M.: Phononic band-gap guidance of acoustic modes in photonic crystal fibers. Phys. Rev. B 71, 045107 (2005)

    Article  Google Scholar 

  105. Luo Z., Yang J.Z., Chen L.P.: A new procedure for aerodynamic missile designs using topological optimization approach of continuum structures. Aerosp. Sci. Technol. 10, 364–373 (2006)

    Article  MATH  Google Scholar 

  106. Niu, F., Wang, B.: The topology optimization design of complex structure based on super-element. In: Conference on Structural and Multidisciplinary Optimization-Theory and Applications, 3–4 Sep 2009, Dalian, China (2009)

  107. Maute K., Allen M.: Conceptual design of aeroelastic structures by topology optimization. Struct. Multidisc. Optim. 27, 27–42 (2004)

    Article  Google Scholar 

  108. Maute, K., Reich, G.W.: An aeroelastic topology optimization approach for adaptive wing design. In: 45th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, 19–22 Apr 2004, Palm Springs, California (2004)

  109. Schuhmacher, G.: Numerical optimization methods in the aerospace design process. In: 2nd European Hyperworks Technology Conference, Sep 30–Oct 1 2008, Strasbourg, France (2008)

  110. Chang C.J., Zheng B., Gea H.C.: Automated design of thin-walled packaging structures. Struct. Multidisc. Optim. 35, 601–608 (2008)

    Article  Google Scholar 

  111. Chang C.H., Yang R.J., Li G. et al.: Multidisciplinary design optimization on vehicle tailor rolled blank design. Struct. Multidisc. Optim. 35, 551–560 (2008)

    Article  Google Scholar 

  112. Kirsch U.: Reanalysis of Structures—a Unified Approach for Linear, Nonlinear, Static and Dynamic Systems. Springer, Berlin (2008)

    MATH  Google Scholar 

  113. Shin M.K., Park K.J., Park G.J.: Optimization of structures with nonlinear behavior using equivalent loads. Comput. Methods Appl. Mech. Eng. 196, 1154–1167 (2007)

    Article  MATH  Google Scholar 

  114. Kim Y., Park G.J.: Nonlinear dynamic response structural optimization using equivalent static loads. Comput. Methods Appl. Mech. Eng. 199, 660–676 (2010)

    Article  Google Scholar 

  115. Madsen J.I., Shyy W., Haftka R.T.: Response surface techniques for diffuser shape optimization. AIAA J. 38, 1512–1518 (2000)

    Article  Google Scholar 

  116. Kirsch U.: On singular topologies in optimum structural design. Struct. Optim. 2, 133–142 (1990)

    Article  Google Scholar 

  117. Cheng G.D., Jiang Z.: Study on topology optimization with stress constraint. Eng. Optimiz. 20, 129–148 (1992)

    Article  Google Scholar 

  118. Cheng G.D., Guo X.: ε-Relaxed approach in structural topology optimization. Struct. Optim. 13, 258–266 (1997)

    Article  Google Scholar 

  119. Rozvany G.I.N.: On design dependent constraints and singular topologies. Struct. Multidisc. Optim. 21, 164–172 (2001)

    Article  Google Scholar 

  120. Sui Y.K., Peng X.R.: The ICM method with objective function transformed by variable discrete condition for continuum structure. Acta Mech. Sin. 22, 68–75 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  121. Sui Y.K., Du J.Z., Guo Y.Q.: Independent continuous mapping for topological optimization of frame structures. Acta. Mech. Sin. 22, 611–619 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  122. Gao T., Zhang W.H., Zhu J.H. et al.: Topology optimization of heat conduction problem involving design dependent heat load effect. Finite Elem. Anal. Des. 44, 805–813 (2008)

    Article  Google Scholar 

  123. Gao T., Zhang W.H.: Topology optimization involving thermo-elastic stress loads. Struct. Multidisc. Optim. 42, 725–738 (2010)

    Article  Google Scholar 

  124. Stolpe M., Svanberg K.: Modelling topology optimization problems as linear mixed 0–1 programs. Int. J. Numer. Methods Eng. 57, 723–739 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  125. Achtziger W., Stolpe M.: Truss topology optimization with discrete design variables-guaranteed global optimality and benchmark examples. Struct. Multidisc. Optim. 34, 1–20 (2007)

    Article  MathSciNet  Google Scholar 

  126. Rasmussen M.H., Stolpe M.: Global optimization of discrete truss topology design problems using a parallel cut-and-branch method. Comput. Struct. 86, 1527–1538 (2008)

    Article  Google Scholar 

  127. Kanno Y., Guo X.: A mixed integer programming for robust truss topology optimization with stress constraints. Int. J. Numer. Methods Eng. 83, 1675–1699 (2010)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geng-Dong Cheng.

Additional information

The project was supported by the National Natural Science Foundation of China (10472022, 10925209, 90816025, 10802016 and 10902018) and the 973 Program of China (2010CB832703).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Guo, X., Cheng, GD. Recent development in structural design and optimization. Acta Mech Sin 26, 807–823 (2010). https://doi.org/10.1007/s10409-010-0395-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10409-010-0395-7

Keywords

Navigation