Skip to main content
Log in

A topology optimization method for design of negative permeability metamaterials

  • Research Paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A methodology based on topology optimization for the design of metamaterials with negative permeability is presented. The formulation is based on the design of a thin layer of copper printed on a dielectric, rectangular plate of fixed dimensions. An effective media theory is used to estimate the effective permeability, obtained after solving Maxwell’s equations on a representative cell of a periodic arrangement using a full 3D finite element model. The effective permeability depends on the layout of copper, and the subject of the topology optimization problem is to find layouts that result in negative (real) permeability at a prescribed frequency. A SIMP-like model is invoked to represent the conductivity of regions of intermediate density. A number of different filtering strategies are invoked to facilitate convergence to binary solutions. Examples of designs for S-band applications are presented for illustration. New metamaterial concepts are uncovered, beyond the classical split-ring inspired layouts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bendsøe MP (1990) Optimal shape design as a material distribution problem. Struct Optim 1:193–202

    Article  Google Scholar 

  • Bourdin B (2001) Filters in topology optimization. Int J Numer Methods Eng 50(9):2143–2158

    Article  MATH  MathSciNet  Google Scholar 

  • Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459

    Article  MATH  Google Scholar 

  • Guest JK, Prevost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254

    Article  MATH  MathSciNet  Google Scholar 

  • Jin J (2002) The finite element method in electromagnetics, 2nd edn. Wiley, New York

    MATH  Google Scholar 

  • Lerat JM, Mallejac N, Acher O (2006) Determination of the effective parameters of a metamaterial by field summation method. J Appl Phys 100(8):084908.1–084908.9

    Article  Google Scholar 

  • Marqués R, Martin F, Sorolla M (2008) Metamaterials with negative parameters. Wiley-Interscience, New Jersey

    Google Scholar 

  • Mlejnik HP, Schirrmacher R (1993) An engineering approach to optimal material distribution and shape finding. Comput Methods Appl Mech Eng 106:1–26

    Article  Google Scholar 

  • Olesen LH, Okkels F, Bruus H (2006) A high-level programming-language implementation of topology optimization applied to steady-state Navier–Stokes flow. Int J Num Methods Eng 65(7):975–1001

    Article  MATH  MathSciNet  Google Scholar 

  • Pendry JB (2000) Negative refraction makes a perfect lens. Phys Rev Lett 85:3966–3969

    Article  Google Scholar 

  • Pendry JB, Holden AJ, Robbins DJ, Stewart WJ (1999) Magnetism from conductors and enhanced nonlinear phenomena. IEEE Trans Microwave Theor Tech 47(11):2075–2084

    Article  Google Scholar 

  • Rockstuhl C, Paul T, Lederer F, Pertsch T, Zentgraf T, Meyrath TP, Giessen G (2008) Transition from thin-film to bulk properties of metamaterials. Phys Rev, B 77:035126. doi:101103/PhysRevB77035126

    Article  Google Scholar 

  • Rozvany GIN, Zhou M, Birker T (1992) Generalized shape optimization without homogenization. Struct Optim 4:250–254

    Article  Google Scholar 

  • Schelkunoff SA, Friis HT (1952) Antennas: the theory and practice. Wiley, New York, pp 584–585

    Google Scholar 

  • Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscipl Optim 33(4–5):401–424

    Article  Google Scholar 

  • Smith DR, Pendry JB (2006) Homogenization of metamaterials by field averaging. J Opt Soc Am B 23(3):391–403

    Article  Google Scholar 

  • Smith DR, Padilla WJ, Vier DC, Nemat-Nasser SC, Schultz S (2000) A composite medium with simultaneously negative permeability and permittivity. Phys Rev Lett 84:4184–4187

    Article  Google Scholar 

  • Smith DR, Vier DC, Koschny, Soukoulis CM (2005) Electromagnetic parameter retrieval from inhomogeneous metamaterials. Phys Rev E 71, paper no. 036617

  • Svanberg K (1987) The method of moving asymptotes. Int J Numer Methods Eng 24:359–373

    Article  MATH  MathSciNet  Google Scholar 

  • Veselago VG (1968) The electrodynamics of substances with simultaneously negative values of “epsilon” and “mu”. Sov Phys Usp 10(4):509–514

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alejandro R. Diaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Diaz, A.R., Sigmund, O. A topology optimization method for design of negative permeability metamaterials. Struct Multidisc Optim 41, 163–177 (2010). https://doi.org/10.1007/s00158-009-0416-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-009-0416-y

Keywords

Navigation