Skip to main content
Log in

Conceptual design of aeroelastic structures by topology optimization

  • Research paper
  • Published:
Structural and Multidisciplinary Optimization Aims and scope Submit manuscript

Abstract

A topology optimization methodology is presented for the conceptual design of aeroelastic structures accounting for the fluid–structure interaction. The geometrical layout of the internal structure, such as the layout of stiffeners in a wing, is optimized by material topology optimization. The topology of the wet surface, that is, the fluid–structure interface, is not varied. The key components of the proposed methodology are a Sequential Augmented Lagrangian method for solving the resulting large-scale parameter optimization problem, a staggered procedure for computing the steady-state solution of the underlying nonlinear aeroelastic analysis problem, and an analytical adjoint method for evaluating the coupled aeroelastic sensitivities. The fluid–structure interaction problem is modeled by a three-field formulation that couples the structural displacements, the flow field, and the motion of the fluid mesh. The structural response is simulated by a three-dimensional finite element method, and the aerodynamic loads are predicted by a three-dimensional finite volume discretization of a nonlinear Euler flow. The proposed methodology is illustrated by the conceptual design of wing structures. The optimization results show the significant influence of the design dependency of the loads on the optimal layout of flexible structures when compared with results that assume a constant aerodynamic load.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L.; Buttazzo, G. 1993: An optimal design problem with perimeter penalization. Calc. Var. 1, 55–69

    Google Scholar 

  2. Barthelemy, J.-F.; Wrenn, G.A.; Dovi, A.R.; Hall, L.E. 1994: Supersonic transport wing minimum design integrating aerodynamics and structures. AIAA J. Aircraft 31, 330–338

    Google Scholar 

  3. Bendsøe, M.P. 1989: Optimal shape design as a material distribution problem. Struct. Optim. 1, 193–202

    Google Scholar 

  4. Bendsøe, M.P. 1999: Variable-topology optimization: Status and challenges. Technical report, Department of Mathematics, Tech. Univ. of Denmark, Lyngby, Denmark

  5. Bowman, K.B.; Grandhi, K.V.; Eastep, F.E. 1989: Structural optimization of lifting surfaces with divergence and control reversal constraints. Struct. Optim. 1, 153–161

    Google Scholar 

  6. Byrd, R.H.; Lu, P.; Nocedal, J.; Zhu, C. 1995: A limited memory algorithm for bound constrained optimization. SIAM J. Sci. Comput. 16, 1190–1208

    Google Scholar 

  7. Cai, X.-C.; Farhat, C.; Sarkis, M. 1998: A minimum overlap restricted additive Schwarz preconditioner and applications in 3D flow simulations. In: Cai, X.-C.; Mandel, J.; Farhat, C. (eds.) The Tenth International Conference on Domain Decomposition Methods for Partial Differential Equations

  8. Chen, B.-C.; Kikuchi, N. 2001: Topology optimization with design-dependent loads. Finite Elem. Anal. Des. 37, 57–70

    Google Scholar 

  9. Conn, A.R.; Gould, N.I.M.; Toint, P.L. 1991: A globally convergent augmented Lagrangian algorithm for optimization with general constraints and simple bounds. SIAM J. Numer. Anal. 28, 545–572

    Google Scholar 

  10. Duysinx, P.; Bendsøe, M.P. 1997: Topology optimization of continuum structures with stress constraints. In: Gutkowski, W.; Mróz, Z. (eds.) Proceedings of the 2nd World Congress of Structural and Multidisciplinary Optimization, pp. 527–532, Institute of Fundamental Technological Research, Warsaw, Poland

  11. Eschenauer, H.A.; Becker, W.; Schumacher, A. 1998: Multidisciplinary structural optimization in aircraft design (in German). Technical report, Final report of BMBF DYNAFLEX

  12. Eschenauer, H.A.; Olhoff, N. 2001: Topology optimization of continuum structures: a review. Appl. Mech. Rev. 54(4), 331–389

    Google Scholar 

  13. Farhat, C.; Degand, C.; Koobus, B.; Lesoinne, M. 1998a: Torsional springs for two-dimensional dynamic unstructured fluid meshes. Comput. Methods Appl. Mech. Eng. 163, 231–245

  14. Farhat, C.; Lesoinne, M.; LeTallec, P. 1998b: Load and motion transfer algorithms for fluid/structure interaction problems with non-matching discrete interfaces: momentum and energy conservation, optimal discretization and application to aeroelasticity. Comput. Methods Appl. Mech. Eng. 157, 95–114

  15. Farhat, C.; Lesoinne, M.; Maman, N. 1995: Mixed explicit/implicit time integration of coupled aeroelastic problems: three–field formulation, geometric conservation and distributed solution. Int. J. Numer. Methods Fluids 21, 807–835

    Google Scholar 

  16. Friedmann, P.P. 1991: Helicopter vibration reduction using structural optimization with aeroelastic/multidisciplinary constraints – a survey. AIAA J. Aircraft 28, 8–21

    Google Scholar 

  17. Ghattas, O.; Li, X. 1998: Domain decomposition methods for sensitivity analysis of a nonlinear aeroelastic problem. Int. J. Comput. Fluid Dyn. 11, 113–130

    Google Scholar 

  18. Gumbert, C.R.; Hou, G.J.-W.; Newman, P.A. 2001: Simultaneous aerodynamic analysis and design optimization (SAADO) for a 3 d flexible wing. In: AIAA 2001-1107, 39th Aerospace Sciences Meeting & Exhibit (held in Reno)

  19. Haber, R.B.; Jog, C.S.; Bendsøe, M.P. 1996: A new approach to variable-topology shape design using a constraint on perimeter. Struct. Optim. 11, 1–12

    Google Scholar 

  20. Haftka, R.T. 1986: Structural optimization with aeroelastic constraints – a survey of U.S. applications. Int. J. Veh. Des. 7, 381–392

    Google Scholar 

  21. Hammer, V.B.; Olhoff, N. 2000: Topology optimization of continuum structures subjected to pressure loading. Struct. Multidisc. Optim. 19, 85–92

    Google Scholar 

  22. Haug, E.J.; Choi, K.K.; Komkov, V. 1986: Design sensitivity analysis of structural systems. Orlando: Academic Press

  23. Hou, G.J.-W.; Satyanarayana, A. 2000: Analytical sensitivity analysis of a statical aeroelastic wing. In: AIAA 2000–4824, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in Long Beach)

  24. Lesoinne, M.; Farhat, C. 1998: A higher-order subiteration free staggered algorithm for nonlinear transient aeroelastic problems. AIAA J. 36, 1754–1756

    Google Scholar 

  25. Lund, E.; Møller, H.; Jakobsen, L.A. 2002: Shape optimization of fluid–structure interaction problems with large displacements and two-equation turbulence models. In: Mang, H.A.; Rammerstorfer, F.G.; Eberhardsteiner, J. (eds.) Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V) (held in Vienna). Vienna: Vienna University of Technology, ISBN 3-9501554-0-6, http://wccm.tuwien.ac.at

  26. Ma, Z.-D.; Kikuchi, N.; Cheng, H.-C.; Hagiwara, I. 1995: Topological optimization technique for free vibration problems. ASME J. Appl. Mech. 62, 200–207

    Google Scholar 

  27. Martins, J.R.R.A.; Alonso, J.J. 2002: High-fidelity aerostructural design optimization of a supersonic business jet. In: AIAA 2002-1483, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (held in Denver)

  28. Maute, K. 2002: Topology optimization for non-linear aeroelastic fluid–structure interaction problems. In: Mang, H.A.; Rammerstorfer, F.G.; Eberhardsteiner, J. (eds.) Proceedings of the Fifth World Congress on Computational Mechanics (WCCM V) (held in Vienna). Vienna: Vienna University of Technology, ISBN 3-9501554-0-6, http://wccm.tuwien.ac.at

  29. Maute, K.; Nikbay, M.; Farhat, C. 2000: Analytically based sensitivity analysis and optimization of nonlinear aeroelastic systems. In: AIAA 2000–4825, 8th AIAA/USAF/NASA/ ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in Long Beach)

  30. Maute, K.; Nikbay, M.; Farhat, C. 2001: Coupled analytical sensitivity analysis and optimization of three-dimensional nonlinear aeroelastic systems. AIAA J. 39(11), 2051–2061

    Google Scholar 

  31. Maute, K.; Nikbay, M.; Farhat, C. 2002: Conceptual layout of aeroelastic wing structures by topology optimization. In: AIAA 2002-1480, 43rd AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference (held in Denver)

  32. Maute, K.; Nikbay, M.; Farhat, C. 2003: Sensitivity analysis and design optimization of three-dimensional nonlinear aeroelastic systems by the adjoint method. Int. J. Numer. Methods Eng. 56, 911–933

    Google Scholar 

  33. Meric, R.A. 1985: Coupled optimization in steady-state thermoelasticity. J. Therm. Stresses 8, 333–347

    Google Scholar 

  34. Meric, R.A. 1986: Material and load optimization of thermoelastic solids. Part I: sensitivity analysis. Part II: numerical results. J. Therm. Stresses 9, 359–372, 373–388

    Google Scholar 

  35. Meric, R.A. 1990: Optimal cross-sectional shape for MHD channel flows. Int. J. Numer. Methods Eng. 30, 919–929

    Google Scholar 

  36. Michaleris, P.; Tortorelli, D.A.; Vidal, C.A. 1995: Analysis and optimization of weakly coupled thermoelastoplastic systems with application to weldment design. Int. J. Numer. Methods Eng. 38, 1259–1285

    Google Scholar 

  37. Militello, C.; Felippa, C. 1991: The first ANDES elements: 9-dof plate bending triangles. Comput. Methods Appl. Mech. Eng. 91, 217–246

    Google Scholar 

  38. Møller, H.; Lund, E. 2000: Shape sensitivity analysis of strongly coupled fluid–structure interaction problems. In: AIAA 2000–4823, 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in Long Beach)

  39. Olhoff, N.; Eschenauer, H. 1999: On optimum topology design in mechanics. In: ECCM’99, European Conference on Computational Mechanics (held in Munich)

  40. Petersson, J.; Sigmund, O. 1998: Slope constrained topology optimization. Int. J. Numer. Methods Eng. 41, 1417–1434

    Google Scholar 

  41. Piperno, S.; Farhat, C.; Larrouturou, B. 1995: Partitioned procedures for the transient solution of coupled aeroelastic problems – Part I: model problem, theory, and two-dimensional application. Comput. Methods Appl. Mech. Eng. 124, 79–112

    Google Scholar 

  42. Pramono, E.; Weeratunga, S.K. 1994: Aeroelastic computations for wings through direct coupling on distributed-memory MIMD parallel computers. In: AIAA-94-0095, 32nd Aerospace Sciences Meeting and Exhibit (held in Reno)

  43. Rodriques, H.; Fernandes, P. 1995: A material based model for topology optimization of thermoelastic structures. Int. J. Numer. Methods Eng. 38, 1951–1965

    Google Scholar 

  44. Roe, P.L. 1981: Approximate Riemann solvers, parameter vectors and difference schemes. J. Comput. Phys. 43, 357–372

    Google Scholar 

  45. Rozvany, G.I.N. 1989: Structural design via optimality criteria. Dordrecht: Kluwer Academic Publishers

  46. Rozvany, G.I.N. (ed.) 1997: Topology optimization in structural mechanics, Vol. 374 of CISM Course and Lectures. Vienna: Springer

  47. Rozvany, G.I.N.; Bendsøe, M.P.; Kirsch, U. 1995: Layout optimization of structures. Appl. Mech. Rev. 48, 41–119

    Google Scholar 

  48. Rozvany, G.I.N.; Olhoff, N. (eds.) 2001: Topology optimization of structures and composite continua. (NATO ARW held in Budapest). Dordrecht: Kluwer Academic Publishers

  49. Rozvany, G.I.N.; Zhou, M.; Birker, T. 1992: Generalized shape optimization with homogenization. Struct. Optim. 4, 250–252

    Google Scholar 

  50. Sigmund, O. 1994: Design of material structures using topology optimization. PhD thesis, Danish Center for Applied Mathematics and Mechanics, Technical University of Denmark

  51. Sigmund, O. 1998: Topology optimization in multiphysics problems. In: AIAA 98-4905, Proceedings of the 7th AIAA/ USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization (held in St. Louis), pp. 1492–1500

  52. Sigmund, O. 2001a: Design of multiphysics actuators using topology optimization – Part I: one-material structures. Comput. Methods Appl. Mech. Eng. 190, 6577–6604

  53. Sigmund, O. 2001b: Design of multiphysics actuators using topology optimization – Part II: two-material structures. Comput. Methods Appl. Mech. Eng. 190, 6605–6627

  54. Sigmund, O.; Petersson, J. 1998: Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct. Optim. 16, 68–75

    Google Scholar 

  55. Sigmund, O.; Torquato, S.; Aksay, I.A. 1998: On the design of 1-3 piezo-composites using topology optimization. J. Mater. Res. 13(4), 1038–1048

    Google Scholar 

  56. Silva, E.C.N.; Fonseca, J.S.O.; Kikuchi, N. 1997: Optimal design of piezoelectric microstructures. Comput. Mech. 19, 397–410

    Google Scholar 

  57. Sobieszczanski-Sobieski, J. 1990: Sensitivity of complex, internally coupled systems. AIAA J. 28, 153–160

    Google Scholar 

  58. Strganac, T.W.; Mook, D.T. 1990: Numerical model of unsteady subsonic aeroelastic behavior. AIAA J. 28, 903–909

    Google Scholar 

  59. Tenek, L.H.; Hagiwara, I. 1993: Static and vibrational shape and topology optimization using homogenization and mathematical programming. Comput. Methods Appl. Mech. Eng. 109, 143–154

    Google Scholar 

  60. Tortorelli, D.A.; Subramani, G.; Lu, S.C.Y.; Haber, R.B. 1991: Sensitivity analysis for coupled thermoelastic systems. Int. J. Solids Struct. 27, 1477–1497

    Google Scholar 

  61. Zhou, M.; Shyy, Y.K.; Thomas, H.L. 2001: Checkerboard and minimum member size control in topology optimization. Struct. Multidisc. Optim. 21, 152–158

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Maute.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maute, K., Allen, M. Conceptual design of aeroelastic structures by topology optimization. Struct Multidisc Optim 27, 27–42 (2004). https://doi.org/10.1007/s00158-003-0362-z

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00158-003-0362-z

Keywords

Navigation