Skip to main content
Log in

Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum

  • Genetics and Molecular Biology of Industrial Organisms - Original Paper
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Corynebacterium glutamicum is particularly known for its potentiality in succinate production. We engineered C. glutamicum for the production of succinate. To enhance C3–C4 carboxylation efficiency, chromosomal integration of the pyruvate carboxylase gene pyc resulted in strain NC-4. To increase intracellular NADH pools, the pntAB gene from Escherichia coli, encoding for transhydrogenase, was chromosomally integrated into NC-4, leading to strain NC-5. Furthermore, we deleted pgi gene in strain NC-5 to redirect carbon flux to the pentose phosphate pathway (PPP). To solve the drastic reduction of PTS-mediated glucose uptake, the ptsG gene from C. glutamicum, encoding for the glucose-specific transporter, was chromosomally integrated into pgi-deficient strain resulted in strain NC-6. In anaerobic batch fermentation, the production of succinate in pntAB-overexpressing strain NC-5 increased by 14% and a product yield of 1.22 mol/mol was obtained. In anaerobic fed-batch process, succinic acid concentration reached 856 mM by NC-6. The yields of succinate from glucose were 1.37 mol/mol accompanied by a very low level of by-products. Activating PPP and transhydrogenase in combination led to a succinate yield of 1.37 mol/mol, suggesting that they exhibited a synergistic effect for improving succinate yield.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, Oldiges M (2010) Importance of NADPH supply for improved l-valine formation in Corynebacterium glutamicum. Biotechnol Prog 26:361–371

    CAS  PubMed  Google Scholar 

  2. Blombach B, Schreiner ME, Bartek T, Oldiges M, Eikmanns BJ (2008) Corynebacterium glutamicum tailored for high-yield l-valine production. Appl Microbiol Biotechnol 79:471–479

    Article  CAS  PubMed  Google Scholar 

  3. Blombach B, Riester T, Wieschalka S, Ziert C, Youn JW, Wendisch VF, Eikmanns BJ (2011) Corynebacterium glutamicum tailored for efficient isobutanol production. Appl Environ Microbiol 77:3300–3310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Boonstra B, French CE, Wainwright I, Bruce NC (1999) The udhA gene of Escherichia coli encodes a soluble pyridine nucleotide transhydrogenase. J Bacteriol 181:1030–1034

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Bozell JJ, Petersen GR (2010) Technology development for the production of biobased products from biorefinery carbohydrates-the US Department of Energyʼs “Top 10” revisited. Green Chem 12:539–554

    Article  CAS  Google Scholar 

  6. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  7. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252

    Article  CAS  PubMed  Google Scholar 

  8. Chen XJ, Jiang ST, Zheng Z, Pan LJ, Luo SZ (2012) Effects of culture redox potential on succinic acid production by Corynebacterium crenatum under anaerobic conditions. Process Biochem 47:1250–1255

    Article  CAS  Google Scholar 

  9. Chin JW, Khankal R, Monroe CA, Maranas CD, Cirino PC (2009) Analysis of NADPH supply during xylitol production by engineered Escherichia coli. Biotechnol Bioeng 102:209–220

    Article  CAS  PubMed  Google Scholar 

  10. Clarke DM, Loo TW, Gillam S, Bragg PD (1986) Nucleotide sequence of the pntA and pntB genes encoding the pyridine nucleotide transhydrogenase of Escherichia coli. Eur J Biochem 158:647–653

    Article  CAS  PubMed  Google Scholar 

  11. Eggeling L, Bott M (2005) Handbook of Corynebacterium glutamicum. CRC Press, Boca Raton, pp 13–16

    Book  Google Scholar 

  12. Hwang GH, Cho JY (2012) Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 39:1869–1874

    Article  CAS  PubMed  Google Scholar 

  13. Ikeda M, Nakagawa S (2003) The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109

    Article  CAS  PubMed  Google Scholar 

  14. Ikeda M, Mitsuhashi S, Tanaka K, Hayashi M (2009) Reengineering of a Corynebacterium glutamicum l-arginine and l-citrulline producer. Appl Environ Microbiol 75:1635–1641

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Inui M, Murakami S, Okino S, Kawaguchi H, Vertes AA, Yukawa H (2004) Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. Appl Microbiol Biotechnol 7:182–196

    CAS  Google Scholar 

  16. Jensen JVK, Wendisch VF (2013) Ornithine cyclodeaminase-based proline production by Corynebacterium glutamicum. Microb Cell Fact 12:63

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jo JH, Seol HY, Lee YB, Kim MH, Hyun HH, Lee HH (2012) Disruption of genes for enhanced biosynthesis of a-ketoglutarate in Corynebacterium glutamicum. Can J Microbiol 58:278–286

    Article  CAS  PubMed  Google Scholar 

  18. Kabus A, Georgi T, Wendisch VF, Bott M (2007) Expression of the Escherichia coli pntAB genes encoding a membrane-bound transhydrogenase in Corynebacterium glutamicum improves l-lysine formation. Appl Microbiol Biotechnol 75:47–53

    Article  CAS  PubMed  Google Scholar 

  19. Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, Dusch N, Eggeling L, Eikmanns BJ, Gaigalat L, Goesmann A, Hartmann M, Huthmacher K, Kramer R, Linke B, McHardy AC, Meyer F, Mockel B, Pfefferle W, Puhler A, Rey DA, Ruckert C, Rupp O, Sahm H, Wendisch VF, Wiegrabe I, Tauch A (2003) The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of l-aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25

    Article  CAS  PubMed  Google Scholar 

  20. Krause FS, Blombach B, Eikmanns BJ (2010) Metabolic engineering of Corynebacterium glutamicum for 2-ketoisovalerate production. Appl Environ Microbiol 76:8053–8061

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lindner SN, Petrov DP, Hagmann CT, Henrich A, Kramer R, Eikmanns BJ, Wendisch VF, Seibold GM (2013) Phosphotransferase system-mediated glucose uptake is repressed in phosphoglucoisomerase-deficient Corynebacterium glutamicum strains. Appl Environ Microbiol 79:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Litsanov B, Brocker M, Bott M (2012) Towards homosuccinate fermentation: metabolic engineering of Corynebacterium glutamicum for anaerobic succinate production from glucose and formate. Appl Environ Microbiol 78:3325–3337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Litsanov B, Kabus A, Brocker M, Bott M (2012) Efficient aerobic succinate production from glucose in minimal medium with Corynebacterium glutamicum. Microb Biotechnol 5:116–128

    Article  CAS  PubMed  Google Scholar 

  24. Lilius EM, Multanen VM, Toivonen V (1979) Quantitative extraction and estimation of intracellular nicotinamide nucleotides in Escherichia coli. Anal Biochem 99:22–27

    Article  CAS  PubMed  Google Scholar 

  25. Lv YY, Wu ZH, Han SY (2011) Genome sequence of Corynebacterium glutamicum S9114, a strain for industrial production of glutamate. J Bacteriol 193:6096–6097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lv YY, Liao JJ, Wu ZH, Han SY, Lin Y, Zheng SP (2012) Genome sequence of Corynebacterium glutamicum ATCC 14067, which provides insight into amino acid biosynthesis in Coryneform bacteria. J Bacteriol 194:742–743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Maki K, Uno K, Morita T, Aiba H (2008) RNA but not protein partners, is directly responsible for translational silencing by a bacterial Hfq-binding small RNA. Proc Natl Acad Sci USA 105:10332–10337

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Marx A, Hans S, Mockel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    Article  CAS  PubMed  Google Scholar 

  29. Mckinlay JB, Vieille C, Zeikus JG (2007) Prospects for a bio-based succinate industry. Appl Microbiol Biothechnol 76:727–740

    Article  CAS  Google Scholar 

  30. Morita T, Maki K, Aiba H (2005) RNase E-based ribonucleoprotein complexes: mechanical basis of mRNA destabilization mediated by bacterial noncoding RNAs. Genes Dev 19:2176–2186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Okino S, Inui M, Yukawa H (2005) Production of organic acids by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 68:465–480

    Article  Google Scholar 

  32. Okino S, Noburyu R, Suda M, Jojima T, Inui M, Yukawa H (2008) An efficient succinic acid production process in a metabolically engineered Corynebacterium glutamicum strain. Appl Microbiol Biotechnol 81:459–464

    Article  CAS  PubMed  Google Scholar 

  33. Okino S, SudaM FujikuraK, InuiM Yukawa H (2008) Production of d-lactic acid by Corynebacterium glutamicum under oxygen deprivation. Appl Microbiol Biotechnol 78:449–454

    Article  CAS  PubMed  Google Scholar 

  34. Payne J, Morri JG (1969) Pyruvate carboxylase in Rhodopseudomonas spheroids. J Gen Microbiol 59:97–101

    Article  CAS  PubMed  Google Scholar 

  35. Peters-Wendisch PG, Schiel B, Wendisch VF, Katsoulidis E, Mockel B, Sahm H, Eikmanns BJ (2001) Pyruvate carboxylase is a major bottleneck for glutamate and lysine production by Corynebacterium glutamicum. J Mol Microbiol Biotechnol 3:295–300

    CAS  PubMed  Google Scholar 

  36. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor, Cold Spring Harbor Laboratory

    Google Scholar 

  37. Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E (2004) The soluble and membrane-bound transhydrogenases UdhA and PntAB have divergent functions in NADPH metabolism of Escherichia coli. J Biol Chem 279:6613–6619

    Article  CAS  PubMed  Google Scholar 

  38. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  39. Stols L, Donnely MI (1997) Production of succinic acid through overexpression of NAD-dependent malic enzyme in an Escherichia coli mutant. Appl Environ Microbiol 63:2695–2701

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Takors R, Bathe B, Rieping M, Hans S, Kelle R, Huthmacher K (2007) Systems biology for industrial strains and fermentation processes-example: amino acids. J Biotechnol 129:181–190

    Article  CAS  PubMed  Google Scholar 

  41. Van der Rest ME, Lange C, Molenaar D (1999) A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl Microbiol Biotechnol 52(4):541–545

    Article  PubMed  Google Scholar 

  42. Wang C, Zhang HL, Cai H, Zhou ZH, Chen YL, Chen YL, Ouyang PK (2014) Succinic acid production from corn cob hydrolysates by genetically engineered Corynebacterium glutamicum. Appl Biochem Biotechnol 172:340–350

    Article  CAS  PubMed  Google Scholar 

  43. Wang C, Cai H, Zhou ZH, Zhang K, Chen ZJ, Chen YL, Wan HG, Ouyang PK (2014) Investigation of ptsG gene in response to xylose utilization in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 41:1249–1258

    Article  PubMed  Google Scholar 

  44. Werpy T, Petersen G (2004) Top value added chemicals from biomass. US Department of Energy, Office of Energy Efficiency and Renewable Energy, Office of the Biomass Program, Washington

  45. Wieschalka S, Blombach B, Eikmanns BJ (2012) Engineering Corynebacterium glutamicum for the production of pyruvate. Appl Microbiol Biotechnol 94:449–459

    Article  CAS  PubMed  Google Scholar 

  46. Wieschalka S, Blombach B, Bott M, Eikmanns BJ (2013) Bio-based production of organic acids with Corynebacterium glutamicum. Microb Biotechnol 6:87–102

    Article  PubMed  Google Scholar 

  47. Yasuda K, Jojima T, Suda M, Okino S, Inui M, Yukawa H (2007) Analyses of the acetate-producing pathways in Corynebacterium glutamicum under oxygen-deprived conditions. Appl Microbiol Biotechnol 77:853–860

    Article  CAS  PubMed  Google Scholar 

  48. Yukawa H, Omumasaba CA, Nonaka H, Kos P, Okai N, Suzuki N, Suda N, Tsuge Y, Watanabe J, Ikeda Y, Vertès AA, Inui M (2007) Comparative analysis of the Corynebacterium glutamicum group and complete genome sequence of strain R. Microbiol-SGM 153:1042–1058

    Article  CAS  Google Scholar 

  49. Zhou ZH, Wang C, Chen ZJ, Chen YL, Zhang K, Xu HT, Cai H (2015) Increasing available NADH supply during succinic acid production by Corynebacterium glutamicum. Biotechnol Progr 31(1):12–19

    Article  Google Scholar 

  50. Zhu NQ, Xia HH, Yang JG, Zhao XM, Chen T (2014) Improved succinate production in Corynebacterium glutamicum by engineering glyoxylate pathway and succinate export system. Biotechnol Lett 36:553–560

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the 973 Program of China (Grant No. 2011CB707405).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heng Cai.

Ethics declarations

Conflict of interest

The authors declares that they have no conflict of interest.

Ethical approval

This article does not contain any studies with human participants performed by any of the authors.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 33 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhou, Z., Cai, H. et al. Redirecting carbon flux through pgi-deficient and heterologous transhydrogenase toward efficient succinate production in Corynebacterium glutamicum . J Ind Microbiol Biotechnol 44, 1115–1126 (2017). https://doi.org/10.1007/s10295-017-1933-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-017-1933-0

Keywords

Navigation