Skip to main content
Log in

Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum

  • Metabolic Engineering and Synthetic Biology
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

With the purpose of generating a microbial strain for l-ornithine production in Corynebacterium glutamicum, genes involved in the central carbon metabolism were inactivated so as to modulate the intracellular level of NADPH, and to evaluate their effects on l-ornithine production in C. glutamicum. Upon inactivation of the 6-phosphoglucoisomerase gene (pgi) in a C. glutamicum strain, the concomitant increase in intracellular NADPH concentrations from 2.55 to 5.75 mmol g−1 (dry cell weight) was accompanied by reduced growth rate and l-ornithine production, suggesting that l-ornithine production is not solely limited by NADPH availability. In contrast, inactivation of the gluconate kinase gene (gntK) led to a 51.8 % increase in intracellular NADPH concentration, which resulted in a 49.9 % increase in l-ornithine production. These results indicate that excess NADPH is not necessarily rate-limiting, but is required for increased l-ornithine production in C. glutamicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Anderson WB, Nordlie RC (1968) Glucose dehydrogenase activity of yeast glucose 6-phosphate dehydrogenase. I. Selective stimulation by bicarbonate, phosphate, and sulfate. Biochemistry 7:1479–1485

    Article  PubMed  CAS  Google Scholar 

  2. Becker J, Klopproggr C, Herold A, Zelder O, Bolten CJ, Wittmann C (2007) Metabolic flux engineering of l-lysine production in Corynebacterium glutamicum over expression and modification of G6P dehydrogenase. J Biotechnol 132:99–109

    Article  PubMed  CAS  Google Scholar 

  3. Blombach B, Schreiner ME, Moch M, Oldiges M, Eikmanns BJ (2007) Effect of pyruvate dehydrogenase complex deficiency on l-lysine production with Corynebacterium glutamicum. Appl Microbiol Biotechnol 76:615–623

    Article  PubMed  CAS  Google Scholar 

  4. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  5. Canonaco F, Hess TA, Heri S, Wang T, Szyperski T, Sauer U (2001) Metabolic flux response to phosphoglucose isomerase knock-out in Escherichia coli and impact of overexpression of the soluble transhydrogenase UdhA. FEMS Microbiol Lett 204:247–252

    Article  PubMed  CAS  Google Scholar 

  6. Cunin R, Glansdorff N, Pierard A, Stalon V (1986) Biosynthesis and metabolism of arginine in bacteria. Microbiol Rev 50:314–352

    PubMed  CAS  Google Scholar 

  7. Fiaux J, Çakar P, Sonderegger M, Wüthrich K, Szyperski T, Sauer U (2003) Metabolic-flux profiling of the yeasts Saccharomyces cerevisiae and Pichia stipitis. Eukaryot Cell 2:170–180

    Article  PubMed  CAS  Google Scholar 

  8. Frunzke J, Engels V, Hasenbein S, Gätgens C, Bott M (2008) Co-ordinated regulation of gluconate catabolism and glucose uptake in Corynebacterium glutamicum by two functionally equivalent transcriptional regulators, GntR1 and GntR2. Mol Microbiol 67:305–322

    Article  PubMed  CAS  Google Scholar 

  9. Georgi T, Rittmann D, Wendisch VF (2005) Lysine and glutamate production by Corynebacterium glutamicum on glucose, fructose and sucrose: roles of malic enzyme and fructose-1,6-bisphosphate. Metab Eng 7:291–301

    Article  PubMed  CAS  Google Scholar 

  10. Hwang J-H, Hwang G-H, Cho J-Y (2008) Effect of increased glutamate availability on l-ornithine production in Corynebacterium glutamicum. J Microbiol Biotechnol 18:704–710

    PubMed  CAS  Google Scholar 

  11. Hwang G-H, Cho J-Y (2010) Identification of a suppressor gene for the arginine-auxotrophic argJ mutation in Corynebacterium glutamicum. J Ind Microbiol Biotechnol 37:1131–1136

    Article  PubMed  CAS  Google Scholar 

  12. Lessie TG, Phibbs PV Jr (1984) Alternative pathways of carbohydrate utilization in pseudomonads. Ann Rev Microbiol 38:359–387

    Article  CAS  Google Scholar 

  13. Marx A, Striegel K, de Graaf AA, Sahm H, Eggeling L (1997) Response of the central metabolism of Corynebacterium glutamicum to different flux burdens. Biotechnol Bioeng 56:168–180

    Article  PubMed  CAS  Google Scholar 

  14. Marx A, Eikmanns BJ, Sahm H, de Graaf AA, Eggeling L (1999) Response of the central metabolism in Corynebacterium glutamicum to the use of an NADH-dependent glutamate dehydrogenase. Metab Eng 1:35–48

    Article  PubMed  CAS  Google Scholar 

  15. Marx A, Hans S, Möckel B, Bathe B, de Graaf AA, McCormack AC, Stapleton C, Burke K, O’Donohue M, Dunican LK (2003) Metabolic phenotype of phosphoglucose isomerase mutants of Corynebacterium glutamicum. J Biotechnol 104:185–197

    Article  PubMed  CAS  Google Scholar 

  16. Mascarenhas D, Ashworth DJ, Chen CS (1991) Deletion of pgi alters tryptophan biosynthesis in a genetically engineered strain of Escherichia coli. Appl Environ Microbiol 57:2995–2999

    PubMed  CAS  Google Scholar 

  17. Mortiz B, Striegel K, de Graaf AA, Sahm H (2000) Kinetic properties of the glucose 6-phosphate and 6-phosphogluconate dehydrogenases from Corynebacterium glutamicum and their application for predicting pentose phosphate pathway flux in vivo. Eur J Biochem 267:3442–3452

    Article  Google Scholar 

  18. Ohnishi J, Katahira R, Mitsuhashi S, Kakita S, Ikeda M (2005) A novel gnd mutation leading to increased l-lysine production in Corynebacterium glutamicum. FEMS Microbiol Lett 242:265–274

    Article  PubMed  CAS  Google Scholar 

  19. Otani M, Ihara N, Umezawa C, Sano K (1986) Predominance of gluconate formation from glucose during germination of Bacillus megaterium QM B1551 spores. J Bacteriol 167:148–152

    PubMed  CAS  Google Scholar 

  20. Sauer U, Hatzimanikatis V, Hohmann HP, Manneberg M, van Loon APGM, Bailey JE (1996) Physiology and metabolic fluxes of wild-type and riboflavin-producing Bacillus subtilis. Appl Environ Microbiol 62:3687–3696

    PubMed  CAS  Google Scholar 

  21. Schäfer A, Tauch A, Jäger W, Kalinowski J, Thierbach G, Pühler A (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined selections in the chromosome of Corynebacterium glutamicum. Gene 145:69–73

    Article  PubMed  Google Scholar 

  22. Vallino J, Stephanopoulos G (1994) Carbon flux distributions at the glucose 6-phosphate branch point in Corynebacterium glutamicum during lysine production. Biotechnol Prog 10:327–334

    Article  CAS  Google Scholar 

  23. Wittmann C, Heinzle E (2002) Genealogy profiling through strain improvement by using metabolic network analysis: metabolic flux genealogy of several generations of lysine producing corynebacteria. Appl Environ Microbiol 68:5843–5849

    Article  PubMed  CAS  Google Scholar 

  24. Yoon K-H, Cho J-Y (2007) Transcriptional analysis of the gum gene cluster from Xanthomonas oryzae pathovar oryzae. Biotechnol Lett 29:95–103

    Article  PubMed  CAS  Google Scholar 

  25. Zamboni N, Fischer E, Laudert D, Aymerich S, Hohmann H-P, Sauer U (2004) The Bacillus subtilis yqjI gene encodes the NADP+-dependent 6-P-gluconate dehydrogenase in the pentose phosphate pathway. J Bacteriol 186:4528–4534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Advanced R&D supporting business between industry and University funded by the Small and Medium Business Administration, Republic of Korea, a grant from the Next-Generation BioGreen 21 Program (no. PJ0080992011), Rural Development Administration, Republic of Korea, and, in part, by the Sangji University Research Fund 2011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae-Yong Cho.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, GH., Cho, JY. Implication of gluconate kinase activity in l-ornithine biosynthesis in Corynebacterium glutamicum . J Ind Microbiol Biotechnol 39, 1869–1874 (2012). https://doi.org/10.1007/s10295-012-1197-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-012-1197-7

Keywords

Navigation