Skip to main content
Log in

Effects of temperature on extracellular hydrolase enzymes from soil microfungi

  • Published:
Polar Biology Aims and scope Submit manuscript

Abstract

Soil microbes play important roles in global carbon and nutrient cycling. Soil microfungi are generally amongst the most important contributors. They produce various extracellular hydrolase enzymes that break down the complex organic molecules in the soil into simpler form. In this study, we investigated patterns of amylase and cellulase (which are responsible for breaking down starch and cellulose, respectively) relative activity (RA) on solid media at different culture temperatures in fungal strains from Arctic, Antarctic and tropical soils. Fungal isolates from all three regions were inoculated onto R2A media supplemented with starch for amylase and carboxymethylcellulose and trypan blue for cellulase screening. The isolates were then incubated at 4, 10, 15, 20, 25, 30, 35 and 40 °C and examined for activity after 5 and 10 days, for tropical and polar isolates, respectively. The data obtained indicate that the polar fungal strains exhibited similar patterns of amylase and cellulase RA. Both Arctic and Antarctic fungi showed highest RA for amylase and cellulase at 35 °C, while colony growth was maximised at 15 °C. Colony growth and RA of the polar isolates were negatively correlated suggesting that, as temperatures increase, the cells become stressed and have fewer resources available to invest in growth. Unlike polar isolates, tropical isolates did not exhibit any trend of colony growth with temperature, rather having idiosyncratic patterns in each isolate. The low enzyme production and RA levels in the tropical strains may suggest both a low ability to respond to temperature variation in their natural thermally stable tropical habitats, as well as a level of thermal stress limiting their enzyme production ability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Addo-Bediako AS, Chown S, Gaston KJ (2000) Thermal tolerance, climatic variability and latitude. P Roy Soc Lond B 267:739–745

    Article  CAS  Google Scholar 

  • Aerts R (2006) The freezer defrosting: global warming and litter decomposition rates in cold biomes. J Ecol 94:713–724

    Article  Google Scholar 

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Ali SH, Alias SA, Siang HY, Smykla J, Pang KL, Guo SY, Convey P (2013) Studies on diversity of soil microfungi in the Hornsund area, Spitsbergen. Polish Polar Res 34:39–54

    Google Scholar 

  • Anisimov O, Fitzharris BB, Hagen JO, Jefferies B, Marchant H, Nelson F, Prowse T, Vaughan D (2001) Polar regions (Arctic and Antarctic). In: McCarthy JJ, Canziani OF, Leary NA, Dokken DJ, White KS (eds) Climate change 2001: impacts, adaptation, and vulnerability. Contribution of Working Group II to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, pp 801–841

  • Anisimov OA, Vaughan DG, Callaghan TV, Furgal C, Marchant H, Prowse TD, Vilhjálmsson H, Walsh JE (2007) Polar regions (Arctic and Antarctic). In: Parry ML, Canziani OF, Palutikof JP, van der Linden PJ, Hanson CE (eds) Climate change 2007: impacts, adaptation and vulnerability. Contribution of Working Group II to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge, UK, pp 653–685

  • Arenz BE, Blanchette RA (2009) Investigations of fungal diversity in wooden structures and soils at historic sites on the Antarctic Peninsula. Can J Microbiol 55:46–56

    Article  CAS  PubMed  Google Scholar 

  • Baldrian P, Voříšková J, Dobiášová P, Merhautová V, Lisá L, Valášková V (2011) Production of extracellular enzymes and degradation of biopolymers by saprotrophic microfungi from the upper layers of forest soil. Plant Soil 338:111–125

    Article  CAS  Google Scholar 

  • Biasi C, Meyer H, Rusalimova O, Hammerle R, Kaiser C, Baranyi C, Daims H, Lashchinsky N, Barsukov P, Richter A (2008) Initial effects of experimental warming on carbon exchange rates, plant growth and microbial dynamics of a lichen-rich dwarf shrub tundra in Siberia. Plant Soil 307:191–205

    Article  CAS  Google Scholar 

  • Bilal T, Malik B, Rehman R, Kumar M (2015) Influence of various parameters on cellulase and xylanase production by different strains of Trichoderma Species. Austin J Anal Pharm Chem 2:1034–1039

    Google Scholar 

  • Bonebrake TC, Mastrandrea MD (2010) Tolerance adaptation and precipitation changes complicate latitudinal patterns of climate change impacts. Proc Natl Acad Sci USA 107:12581–12586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradner JR, Gillings M, Nevalainen KHM (1999) Qualitative assessment of hydrolytic activities in Antarctic microfungi grown at different temperatures on solid media. World J Microb Biot 15:131–132

    Article  Google Scholar 

  • Brindha RJ, Mohan TS, Immanual G, Jeeva S, Packia Lekshmi NCJ (2011) Studies on amylase and cellulase enzyme activity of the fungal organisms causing spoilage in tomato. Eur J Exp Biol 1:90–96

    Google Scholar 

  • Burhan A, Nisa U, Gokhan C, Omer C, Ashabil A, Osman G (2012) Amylase production by endophytic fungi Cylindrocephalum sp. isolated from medicinal plant Alpinia calcarata (Haw.) Roscoe. Braz J Microbiol 43:1213–1221

    Article  Google Scholar 

  • Chaillan F, Le Flèche A, Bury E, Phantavong YH, Grimont P, Saliot A, Oudot J (2004) Identification and biodegradation potential of tropical aerobic hydrocarbon-degrading microorganisms. Res Microbiol 155:587–595

    Article  CAS  PubMed  Google Scholar 

  • Convey P (1996) Overwintering strategies of terrestrial invertebrates in Antarctica- the significance of flexibility in extremely seasonal environments. Eur J Entomol 93:489–505

    Google Scholar 

  • Convey P, Chown SL, Clarke A, Barnes DKA, Cummings V, Ducklow H, Frati F, Green TGA, Gordon S, Griffiths H, Howard-Williams C, Huiskes AHL, Laybourn-Parry J, Lyons B, McMinn A, Peck LS, Quesada A, Schiaparelli S, Wall D (2014) The spatial structure of Antarctic biodiversity. Ecol Monogr 84:203–244

    Article  Google Scholar 

  • Convey P, Coulson SJ, Worland MR, Sjöblom A Annual and shorter term temperature patterns and variation in the upper layers of polar soils for terrestrial biota. Polar Biol. (In review)

  • Coulson SJ, Hodkinson LD, Strathdee AT, Block W, Webb NR, Bale JS, Worland MR (1995) Thermal environments of Arctic soil organisms during winter. Arctic Alpine Res 27:364–370

    Article  Google Scholar 

  • Cunningham EL, Agard DA (2004) Disabling the folding catalyst is the last critical step in alpha-lytic protease folding. Protein Sci 13:325–331

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Graaff MA, Classen AT, Castro HF, Schadt CW (2010) Labile soil carbon inputs mediate the soil microbial community composition and plant residue decomposition rates. New Phytol 188:1055–1064

    Article  PubMed  Google Scholar 

  • Deshpande P, Nair S, Khedkar S (2009) Water hyacinth as carbon source for the production of cellulase by Trichoderma reesei. Appl Biochem Biotech 158:552–560

    Article  CAS  Google Scholar 

  • Deutsch CA, Tewksbury J, Huey RB, Sheldon K, Ghalambor C, Haak D, Martin PR (2008) Impacts of climate warming on terrestrial ectotherms across latitude. Proc Natl Acad Sci USA 105:6668–6672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dong Y, Somero GN (2009) Temperature adaptation of cytosolic malate dehydrogenases of limpets (genus Lottia): differences in stability and function due to minor changes in sequence correlate with biogeographic and vertical distributions. J Exp Biol 212:169–177

    Article  CAS  PubMed  Google Scholar 

  • Duncan SM, Minasaki R, Farrell RL, Thwaites JM, Held BW, Arenz BE, Jurgens JA, Blanchette RA (2008) Screening fungi isolated from historic Discovery Hut on Ross Island, Antarctica for cellulose degradation. Antarct Sci 20:463–470

    Article  Google Scholar 

  • Fahnestock JT, Jones MH, Brooks PD, Walker DA, Welker JM (1998) Winter and early spring CO2 efflux from tundra communities of northern Alaska. J Geophys Res-Atmos 103:29023–29027

    Article  CAS  Google Scholar 

  • Feller G, Gerday C (2003) Psychrophilic enzymes: hot topics in cold adaptation. Nat Rev Microbiol 1:200–208

    Article  CAS  PubMed  Google Scholar 

  • Ferrari BC, Zhang CD, Dorst J (2011) Recovering greater fungal diversity from pristine and diesel fuel contaminated sub-Antarctic soil through cultivation using both a high and a low nutrient media approach. Front Microbiol 2:1–14

    Article  Google Scholar 

  • Florczak T, Daroch M, Wilkinson MC, Bialkowska A, Bates AD, Turkiewicz M, Iwanejko LA (2013) Purification, characterisation and expression in Saccharomyces cerevisiae of LipG7 an enantioselective, cold-adapted lipase from the Antarctic filamentous fungus Geomyces sp. P7 with unusual thermostability characteristics. Enzyme Microb Technol 53:18–24

    Article  CAS  PubMed  Google Scholar 

  • Gao B, Mao Y, Zhang L, He L, Wei D (2016) A novel saccharifying α-amylase of Antarctic psychrotolerant fungi Geomyces pannorum: gene cloning, functional expression, and characterization. Starch-Stärke 68:20–28

    Article  CAS  Google Scholar 

  • Gawas-Sakhalkar P, Singh SM (2011) Fungal community associated with Arctic moss, Tetraplodon mimoides and its rhizosphere: bioprospecting for production of industrially useful enzymes. Res Commun 100:1701–1705

    Google Scholar 

  • German DP, Weintraub MN, Grandy AS, Lauber CL, Rinkes ZL, Allison SD (2011) Optimization of hydrolytic and oxidative enzyme methods for ecosystem studies. Soil Biol Biochem 43:1387–1397

    Article  CAS  Google Scholar 

  • German DP, Marcelo KB, Stone MM, Allison SD (2012) The Michaelis-Menten kinetics of soil extracellular enzymes in response to temperature: a cross-latitudinal study. Glob Change Biol 18:1468–1479

    Article  Google Scholar 

  • Gesheva V, Vasileva-Tonkova E (2012) Production of enzymes and antimicrobial compounds by halophilic Antarctic Nocardioides sp. grown on different carbon sources. World J Microbiol Biotechnol 28:2069–2076

    Article  CAS  PubMed  Google Scholar 

  • Ghalambor CK, Huey RB, Martin P, Tewksbury J, Wang G (2006) Are mountain passes higher in the tropics? Janzen’s hypothesis revisited. Integr Comp Biol 46:5–17

    Article  PubMed  Google Scholar 

  • https://www.indexfungorum.org/Names/Names.asp. Accessed 26 Sept 2017

  • Huestis DL, Oppert B, Marshall JL (2009) Geographic distributions of Idh-1 alleles in a cricket are linked to differential enzyme kinetic performance across thermal environments. BMC Evol Biol 9:113–124

    Article  PubMed  PubMed Central  Google Scholar 

  • Huey RB (1976) Latitudinal pattern of between-altitude faunal similarity: mountains might be ‘‘higher” in the tropics. Am Nat 112:225–254

    Article  Google Scholar 

  • Hugelius G, Bockheim JG, Camill P, Elberling B, Grosse G, Harden JW, Johnson K, Jorgenson T, Koven CD, Kuhry P, Michaelson G, Mishra U, Palmtag J, Ping CL, O’Donnell J, Schirrmeister L, Schuur EAG, Sheng Y, Smith LC, Strauss J, Yu Z (2013) A new data set for estimating organic carbon storage to 3 m depth in soils of the northern circumpolar permafrost region. Earth Syst Sci Data 5:393–402

    Article  Google Scholar 

  • Ibrahim MF, Razak MNA, Phang LY, Hassan MA, Abd-Aziz S (2013) Crude cellulase from oil palm empty fruit bunch by Trichoderma asperellum UPM1 and Aspergillus fumigatus UPM2 for fermentable sugars production. Appl Biochem Biotechnol 170:1320–1335

    Article  CAS  PubMed  Google Scholar 

  • Janzen DH (1967) Why mountain passes are higher in the tropics. Am Nat 101:233–249

    Article  Google Scholar 

  • Johns GC, Somero GN (2004) Evolutionary convergence in adaptation of proteins to temperature: a4-lactate dehydrogenases of Pacific damselfishes (Chromis spp.). Mol Biol Evol 21:314–320

    Article  CAS  PubMed  Google Scholar 

  • Kleinteich J, Wood SA, Kuepper FC, Camacho A, Quesada A, Frickey T, Dietrich DR (2012) Temperature-related changes in polar cyanobacterial mat diversity and toxin production Nature. Clim Change 2:356–360

    Article  CAS  Google Scholar 

  • Koch O, Tscherko D, Kandeler E (2007) Temperature sensitivity of microbial respiration, nitrogen mineralization, and potential soil enzyme activities in organic alpine soils. Glob Biogeochem Cycles 21:1–11

    Article  Google Scholar 

  • Kochkina GA, Ivanushkina NE, Akimov VN, Gilichinskii DA, Ozerskaya SM (2007) Halo- and psychrotolerant Geomyces fungi from Arctic cryopegs and marine deposits. Microbiology 76:31–38

    Article  CAS  Google Scholar 

  • Krishnan A, Convey P, Gonzalez-Rocha G, Alias SA (2016) Production of extracellular hydrolase enzymes by fungi from King George Island. Polar Biol 39:65–76

    Article  Google Scholar 

  • Kurek E, Korniłłowicz-Kowalska T, Słomka A, Melke J (2007) Characteristics of soil filamentous fungi communities isolated from various micro − relief forms in the high Arctic tundra (Bellsund region, Spitsbergen). Polish Polar Res 28:57–73

    Google Scholar 

  • Laudelot H, Meyer J (1954) Les cycles d’elements minerales et de matière organique en forêt équatoriale Congolaise. Trans Fifth Int Congr Soil Sci 11:267–272

    Google Scholar 

  • Manivannan S, Kathiresan K (2007) Alkaline protease production by Penicillium fellutanum isolated from mangrove sediment. Int J Biol Chem 2:98–103

    Google Scholar 

  • Margesin R, Gander S, Zacke G, Gounot AM, Schinner F (2003) Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7:451–458

    Article  CAS  PubMed  Google Scholar 

  • Marx MC, Wood M, Jarvis SC (2001) A microplate fluorimetric assay for the study of enzyme diversity in soils. Soil Biol Biochem 33:1633–1640

    Article  CAS  Google Scholar 

  • Minnis AM, Lindner DL (2013) Phylogenetic evaluation of Geomyces and allies reveals no close relatives of Pseudogymnoascus destructans, comb. nov., in bat hibernacula of eastern North America. Fungal Biol 117:638–649

    Article  PubMed  Google Scholar 

  • Morita RY (1975) Psychrophilic bacteria. Bacteriol Rev 39:144–167

    CAS  PubMed  PubMed Central  Google Scholar 

  • Newsham KK, Upson R, Read DJ (2009) Mycorrhizas and dark septate root endophytes in polar regions. Fungal Ecol 2:10–20

    Article  Google Scholar 

  • Nye PH (1961) Organic matter and nutrient cycles under moist tropical forest. Plant Soil 13:333–346

    Article  CAS  Google Scholar 

  • Øvstedal DO, Lewis Smith RI (2001) Lichens of Antarctica and South Georgia-a guide to their identification and ecology. Cambridge University Press, Cambridge, p 424

    Google Scholar 

  • Prenafeta-Boldu FX, Summerbell R, de Hoog GS (2005) Fungi growing on aromatic hydrocarbons: biotechnology’s unexpected encounter with biohazard? FEMS Microbiol Rev 30:109–130

    Article  Google Scholar 

  • Radwan S (2008) Microbiology of oil-contaminated desert soils and coastal areas in the Arabian Gulf region. In: Dion P, Nautiyal CS (eds) Microbiology of extreme soils. Soil Biology 13. Springer, Berlin, pp 275–298

  • Rashid SS, Alam MZ, Karim MIA, Sallah MH (2009) Optimization of the nutrient supplements for cellulase production with the basal medium palm oil mill effluent. World Acad Sci Eng Technol 3:568–574

    Google Scholar 

  • Rinnan R, Michelsen A, Baath E, Jonasson S (2007) Mineralization and carbon turnover in subarctic heath soil as affected by warming and additional litter. Soil Biol Biochem 39:3014–3023

    Article  CAS  Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Shaver GR, Giblin AE, Nadelhoffer KJ, Thieler KK, Downs MR, Laundre JA, Rastetter EB (2006) Carbon turnover in Alaskan tundra soils: effects of organic matter quality, temperature, moisture and fertilizer. J Ecol 94:740–753

    Article  CAS  Google Scholar 

  • Singh SM, Singh SK, Yadav LS, Singh PN, Ravindra R (2012) Filamentous soil fungi from Ny-Ålesund, Spitsbergen, and screening for extracellular enzymes. Arctic 65:45–55

    Article  Google Scholar 

  • Sinsabaugh RL, Antibus RK, Linkins AE, Mcclaugherty CA, Rayburn L, Repert D, Weiland T (1993) Wood decomposition: nitrogen and phosphorus dynamics in relation to extracellular enzyme-activity. Ecology 74:1586–1593

    Article  CAS  Google Scholar 

  • Sogonov MV, Schroers HJ, Gams W, Dijksterhuis J, Summerbell RC (2005) The hyphomycete Teberdinia hygrophila gen. nov., sp. nov. and related anamorphs of Pseudeurotium species. Mycologia 97:695–709

    Article  CAS  PubMed  Google Scholar 

  • Somero GN (2004) Adaptation of enzymes to temperature: searching for basic ‘‘strategies’’. Comp Biochem Physiol 139:321–333

    Article  Google Scholar 

  • Sturm M, Schimel J, Michaelson G, Welker JM, Oberbauer SF, Liston GE, Fahnestock J, Romanovsky VE (2005) Winter biological processes could help convert Arctic tundra to shrubland. Bioscience 55:17–26

    Article  Google Scholar 

  • Tortella GR, Rubilar O, Gianfreda L, Valenzuela E, Diez MC (2008) Enzymatic characterization of Chilean native wood-rotting fungi for potential use in the bioremediation of polluted environments with chlorophenols. World J Microbiol Biotechnol 24:2805–2818

    Article  CAS  Google Scholar 

  • Tveit AT, Urich T, Frenzel P, Svenning MM (2015) Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci USA 112:2507–2516

    Article  Google Scholar 

  • Waring BG, Weintraub SR, Sinsabaugh RL (2014) Ecoenzymatic stoichiometry of microbial nutrient acquisition in tropical soils. Biogeochemistry 117:101–113

    Article  CAS  Google Scholar 

  • Zeng X, Xiao X, Wang P, Wang FP (2004) Screening and characterization of psychrotrophic, lipolytic bacteria from deep sea sediments. J Microbiol Biotechnol 14:952–958

    CAS  Google Scholar 

  • Zonn SV, Li CK (1962) Dynamics of the breakdown of litter and humus, and seasonal changes in their ash composition, in two types of tropical biogeocoenoses. Soobshch Lab Lesoved. Moskva 6:144–152 (In Russian)

    Google Scholar 

Download references

Acknowledgements

We thank the Instituto Antartico Chileno, Polish Polar Research Program and Korean Polar Research Institute for their logistic support during the Antarctic expedition in 2007 and Arctic expeditions in 2006 and 2010. We also thank Laura Gerrish, BAS Mapping and Geographic Information Centre, for the preparation of Fig. 1.

Funding

We thank the University of Malaya (Grants RP007-2012C, PG041-2013A), Ministry of Science, Technology and Innovation (Flagship GA006-2014FL), HiCOE (IOES-2014G) and Yayasan Penyelidikan Antartika Sultan Mizan. P. Convey is supported by a UM Icon Visiting Professorship and NERC core funding to the BAS Biodiversity, Evolution and Adaptation Team. This paper also contributes to the AnT-ERA SCAR scientific programme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siti Aisyah Alias.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 44 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Krishnan, A., Convey, P., Gonzalez, M. et al. Effects of temperature on extracellular hydrolase enzymes from soil microfungi. Polar Biol 41, 537–551 (2018). https://doi.org/10.1007/s00300-017-2215-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00300-017-2215-z

Keywords

Navigation