Skip to main content
Log in

Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts

  • Original Paper
  • Published:
Extremophiles Aims and scope Submit manuscript

Abstract

The potential of 89 culturable cold-adapted isolates from uncontaminated habitats, including 61 bacterial and 28 yeast strains, to utilize representative fractions of petroleum hydrocarbons (n-alkanes, monoaromatic and polycyclic aromatic hydrocarbons) for growth and to produce various enzymes at 10°C was investigated. The efficiency of bacterial and yeast strains was compared. The growth temperature range of the yeast strains was significantly smaller than that of the bacterial strains. Sixty percent of the yeasts but only 8% of the bacteria could be classified as true psychrophiles, showing no growth above 20°C. A high percentage (89%) of the yeast strains showed lipase activity. More than one-third of the 61 bacterial strains produced amylase, β-lactamase, β-galactosidase or lipase; more than two-thirds were protease producers. Only 6% of the bacterial strains but 79% of the yeast strains utilized n-hexadecane for growth; 13% of the bacterial strains and 21–32% of the yeast strains utilized phenol, phenanthrene or anthracene for growth. Only four yeast strains but none of the bacterial strains could grow with all hydrocarbons tested. The biodegradation of phenol was investigated in fed-batch cultures at 10°C. Three yeast strains degraded phenol concentrations as high as 10 mm (one strain) or 12.5 mm (two strains). Of eight bacterial strains, two strains degraded up to 10 mm phenol. The optimum temperature for phenol degradation was 20°C for all eight bacterial strains and for two yeast strains. Biodegradation by five yeast strains was optimal at 10°C and faster at 1°C than at 20°C. All phenol-degrading strains produced catechol 1,2 dioxygenase activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  • Aislabie J, McLeod M, Fraser R (1998) Potential for biodegradation of hydrocarbons in soil from the Ross Dependency, Antarctica. Appl Microbiol Biotechnol 49:210–214

    CAS  Google Scholar 

  • Aislabie J, Foght J, Saul D (2000) Aromatic hydrocarbon-degrading bacteria from soil near Scott base, Antarctica. Polar Biol 23:183–188

    Article  Google Scholar 

  • Aislabie J, Fraser R, Duncan S, Farrell RL (2001) Effects of oil spills on microbial heterotrophs in Antarctic soils. Polar Biol 24:308–313

    Article  Google Scholar 

  • Alexander (1999) Biodegradation and bioremediation, 2nd edn. Academic, London

  • Alkasrawi M, Nandakumar R, Margesin R, Schinner F, Mattiasson B (1999) A microbial biosensor based on Yarrowia lipolytica for the off-line determination of middle-chain alkanes. Biosensors Bioelectron 14:723–727

    Article  CAS  Google Scholar 

  • Babu KS, Ajithkumar, Kunhi AAM (1995) Mineralization of phenol and its derivatives by Pseudomonas sp.strain cp4. World J Microbiol Biotechnol 11:661–664

    CAS  Google Scholar 

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. Ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  PubMed  Google Scholar 

  • Bastos AER, Tornisielo VL, Nozawa SR, Trevors JT, Rossi A (2000a) Phenol metabolism by two microorganisms isolated from Amazonian forest soil samples. J Ind Microbiol Biotechnol 24:403–409

    Article  CAS  Google Scholar 

  • Bastos AER, Moon DH, Rossi A, Trevors J, Tsai SM (2000b) Salt-tolerant phenol-degrading microorganisms isolated from Amazonian soil samples. Arch Microbiol 174:346–352

    Article  CAS  PubMed  Google Scholar 

  • Bej AK, Saul D, Aislabie J (2000) Cold-tolerant alkane-degrading Rhodococcus species from Antarctica. Polar Biol 23:100–105

    Article  Google Scholar 

  • Birger A, Krauss G, Kiesel B, Dermietzel J, Gläßer W (1997) Abbaupotential für aliphatische und aromatische Kohlenwasserstoffe in bakteriellen und heterotrophen Communities differenter Grundwasser-Biozönosen. In: Kreysa G, Wiesner J (eds) Möglichkeiten und Grenzen der Reinigung kontaminierter Gewässer. Dechema, Frankfurt, pp 571–581

  • Birgisson H, Delgado O, Garcia Arroyo L, Hatti-Kaul R, Mattiasson B (2003) Cold-adapted yeasts as producers of cold-active polygalacturonases. Extremophiles 7:185–193

    Google Scholar 

  • Bowman JP, McCammon SA, Brown MV, Nichols DS, McMeekin TA (1997) Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl Environ Microbiol 63:3068–3078

    CAS  PubMed  Google Scholar 

  • Burden DW, Eveleight DE (1990) Yeasts—diverse substrates and products. In: Spencer JFT, Spencer DM (eds) Yeast technology. Springer, Berlin Heidelberg New York, pp 199–227

  • Cerniglia CE (1992) Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351–368

    CAS  Google Scholar 

  • Chablain PA, Philippe G, Groboillot A, Truffaut N, Guespin-Michel JF (1997) Isolation of a soil psychrotrophic toluene-degrading Pseudomonas strain: influence of temperature on the growth characteristics on different substrates. Res Microbiol 148:153–161

    Article  CAS  PubMed  Google Scholar 

  • Delille D, Perret E (1989) Influence of temperature on the growth potential of southern polar marine bacteria. Microb Ecol 18:117–123

    Google Scholar 

  • Dua M, Singh A, Sethunathan N, Johri AK (2002) Biotechnology and bioremediation: successes and limitations. Appl Microbiol Biotechnol 59:143–152

    Article  CAS  PubMed  Google Scholar 

  • Foght JM, Fedorak PM, Westlake DWS (1990) Mineralization of (14C)hexadecane and (14C)phenanthrene in crude oil: specificity among bacterial isolates. Can J Microbiol 36:169–175

    CAS  PubMed  Google Scholar 

  • Gerday C, Aittaleb M, Bentahir M, Chessa J-P, Claverie P, Collins T, D'Amico S, Dumont J, Garsoux G, Georlette D, Hoyoux A, Lonhienne T, Meuwis M-A, Feller G (2000) Cold-adapted enzymes: from fundamentals to biotechnology. Trends Biotechnol 18:103–107

    CAS  PubMed  Google Scholar 

  • Gounot AM (1999) Microbial life in permanently cold soils. In: Margesin R, Schinner F (eds) Cold-adapted organisms. Springer, Berlin Heidelberg New York, pp 3–15

  • Gramss G, Voight KD, Kirsche B (1999) Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10:51–62

    Article  CAS  PubMed  Google Scholar 

  • Guieysse B, Wikström P, Forsman M, Mattiasson B (2001) Biomonitoring of continuous microbial community adaptation towards more efficient phenol degradation in a fed-batch bioreactor. Appl Microbiol Biotechnol 56:780–787

    Article  CAS  PubMed  Google Scholar 

  • Hinteregger C, Leitner R, Loidl M, Ferschl A, Streichsbier F (1992) Degradation of phenol and phenolic compounds by Pseudomonas putida EFII. Appl Microbiol Biotechnol 37:252–259

    CAS  PubMed  Google Scholar 

  • Kotturi G, Robinson CW, Inniss WE (1991) Phenol degradation by a psychrotrophic strain of Pseudomonas putida. Appl Microbiol Biotechnol 34:539–543

    CAS  Google Scholar 

  • Krug M, Ziegler H, Straube G (1985) Degradation of phenolic compounds by the yeast Candida tropicalis HP15. J Basic Microbiol 2:103–110

    Google Scholar 

  • Li JK, Humphrey AE (1989) Kinetic and fluorimetric behaviour of a phenol fermentation. Biotechnol Lett 11:177–182

    CAS  Google Scholar 

  • Margesin R (2002) Cold-active enzymes as new tools in biotechnology. In: Gerday C (ed) Extremophiles. Encyclopedia of life support systems. EOLSS, Oxford (in press)

  • Margesin R, Schinner F (1997a) Effect of temperature on oil degradation by a psychrotrophic yeast in liquid culture and in soil. FEMS Microbiol Ecol 24:243–249

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1997b) Bioremediation of diesel-oil contaminated alpine soils at low temperatures. Appl Microbiol Biotechnol 47:462–468

    Article  CAS  Google Scholar 

  • Margesin R, Schinner F (1998) Oil biodegradation potential in alpine habitats. Arct Alp Res 30:262–265

    Google Scholar 

  • Margesin R, Schinner F (2001) Biodegradation and bioremediation of hydrocarbons in extreme environments. Appl Microbiol Biotechnol 56:650–663

    Article  CAS  PubMed  Google Scholar 

  • Margesin R, Zacke G, Schinner F (2002) Characterization of heterotrophic microorganisms in alpine glacier cryoconite. Arct Antarct Alp Res 34:88–93

    Google Scholar 

  • McLean G, Röhler J, Buchser W (1995) Biodegradability of two-stroke cycle outboard engine oils in water. Approved test method CEC L-33-A-93, Brussels

  • Morgan JAW, Winstanley C, Pickup RW, Jones JG, Saunders JR (1989) Direct phenotypic and genotypic detection of a recombinant pseudomonad population released into lake water. Appl Environ Microbiol 55:2537–2544

    Google Scholar 

  • Neidle EL, Ornston LN (1986) Cloning and expression of Acinetobacter calcoaceticus catechol 1,2-dioxygenase structural gene cat A in Escherichia coli. J Bacteriol 168:815–820

    CAS  PubMed  Google Scholar 

  • Olivera NL, Esteves JL, Commendatore MG (1997) Alkane biodegradation by a microbial community from contaminated sediments in Patagonia, Argentina. Int Biodet Biodegrad 40:75–79

    Article  CAS  Google Scholar 

  • Santos VL, Linardi VR (2001) Phenol degradation by yeasts isolated from industrial effluents. J Gen Appl Microbiol 47:213–221

    CAS  PubMed  Google Scholar 

  • Sotsky JB, Atlas RM (1994) Frequency of genes in aromatic and aliphatic hydrocarbon biodegradation pathways within bacterial populations from Alaskan sediments. Can J Microbiol 40:981–985

    CAS  PubMed  Google Scholar 

  • Trosok SP, Luong JHT, Juck DF, Driscoll BT (2002) Characterization of two novel yeast strains used in mediated biosensors for wastewater. Can J Microbiol 48:418–426

    Article  CAS  PubMed  Google Scholar 

  • Whyte LG, Hawari J, Zhou E, Bourbonnière L, Inniss WE, Greer CW (1998) Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl Environ Microbiol 64:2578–2584

    CAS  PubMed  Google Scholar 

  • Yakimov MM, Giuliano L, Bruni V, Scarfi S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. Microbiologica 22:249–256

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rosa Margesin.

Additional information

Communicated by K. Horikoshi

Rights and permissions

Reprints and permissions

About this article

Cite this article

Margesin, R., Gander, S., Zacke, G. et al. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7, 451–458 (2003). https://doi.org/10.1007/s00792-003-0347-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00792-003-0347-2

Keywords

Navigation