Skip to main content
Log in

Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane

  • Applied genetics and molecular biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Accumulation of heavy metals without developing toxicity symptoms is a phenotype restricted to a small group of plants called hyperaccumulators, whose metal-related characteristics suggested the high potential in biotechnologies such as bioremediation and bioextraction. In an attempt to extrapolate the heavy metal hyperaccumulating phenotype to yeast, we obtained Saccharomyces cerevisiae cells armed with non-natural metal-binding hexapeptides targeted to the inner face of the plasma membrane, expected to sequester the metal ions once they penetrated the cell. We describe the construction of S. cerevisiae strains overexpressing metal-binding hexapeptides (MeBHxP) fused to the carboxy-terminus of a myristoylated green fluorescent protein (myrGFP). Three non-toxic myrGFP-MeBHxP (myrGFP-H6, myrGFP-C6, and myrGFP-(DE)3) were investigated against an array of heavy metals in terms of their effect on S. cerevisiae growth, heavy metal (hyper) accumulation, and capacity to remove heavy metal from contaminated environments.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Reference

  • Amberg DC, Burke DJ, Strathern JN (2005) “Quick and dirty” plasmid transformation of yeast colonies. In: Burke D, Dawson D, Stearns T (eds) Methods in yeast genetics. A Cold Spring Harbor laboratory course manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, pp 113–114

    Google Scholar 

  • Blaby-Haas CE, Merchant SS (2014) Lysosome-related organelles as mediators of metal homeostasis. J Biol Chem 289:28129–28136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brachmann CB, Davies A, Cost GJ, Caputo E, Li J, Hieter P, Boeke JD (1998) Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132

    Article  CAS  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bradl H (ed) (2002) Heavy metals in the environment: origin, interaction and remediation, vol 6. Academic, London

    Google Scholar 

  • Brady D, Stoll AD, Starke L, Duncan JR (1994) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44:297–302

    Article  CAS  PubMed  Google Scholar 

  • Cohen R, Engelberg D (2007) Commonly used Saccharomyces cerevisiae strains (e.g. BY4741, W303) are growth sensitive on synthetic complete medium due to poor leucine uptake. FEMS Microbiol Lett 273:239–243

    Article  CAS  PubMed  Google Scholar 

  • Dalcorso G, Fasani E, Furini A (2013) Recent advances in the analysis of metal hyperaccumulation and hypertolerance in plants using proteomics. Front Plant Sci 4:280

    Article  PubMed  PubMed Central  Google Scholar 

  • Dürr G, Strayle J, Plemper R, Elbs S, Klee SK, Catty P, Wolf DH, Rudolph HK (1998) The medial-Golgi ion pump Pmr1 supplies the yeast secretory pathway with Ca2+ and Mn2+ required for glycosylation, sorting, and endoplasmic reticulum-associated protein degradation. Mol Biol Cell 9:1149–1162

    Article  PubMed  PubMed Central  Google Scholar 

  • Egel-Mitani M, Andersen AS, Diers I, Hach M, Thim L, Hastrup S, Vad K (2000) Yield improvement of heterologous peptides expressed in yps1-disrupted Saccharomyces cerevisiae strains. Enzym Microb Technol 26:671–677

    Article  CAS  Google Scholar 

  • Eide DJ (2003) Multiple regulatory mechanisms maintain zinc homeostasis in Saccharomyces cerevisiae. J Nutr 133:1532S–1535S

    CAS  PubMed  Google Scholar 

  • Eide DJ (2009) Homeostatic and adaptive responses to zinc deficiency in Saccharomyces cerevisiae. J Biol Chem 284:18565–18569

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Farcasanu IC, Matache M, Iordache V, Neagoe A (2012) Hyperaccumulation: a key to heavy metal bioremediation. Soil Biol 31:251–278

    Article  CAS  Google Scholar 

  • Feldmann H (ed) (2012) Transition metal transport. In Yeast: molecular and cell biology, 2nd edn. Wiley-Blackwell, Hoboken, pp 226–232

  • Francois JM (2016) Cell surface interference with plasma membrane and transport processes in yeasts. Adv Exp Med Biol 892:11–31

    Article  CAS  PubMed  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    Article  CAS  PubMed  Google Scholar 

  • Gifford S, Dunstan RH, O’Connor W, Koller CE, MacFarlane GR (2007) Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol 25:60–65

    Article  CAS  PubMed  Google Scholar 

  • Gillen KM, Pausch M, Dohlman HG (1998) N-terminal domain of Gpa1 (G protein α) subunit is sufficient for plasma membrane targeting in yeast Saccharomyces cerevisiae. J Cell Sci 111(Pt. 21):3235–3244

    CAS  PubMed  Google Scholar 

  • Guthrie C, Fink GR (eds) (1991) Guide to yeast genetics and molecular biology. Methods Enzymol 194:1–863

  • He ZL, Yang XE, Stoffella PJ (2005) Trace elements in agroecosystems and impacts on the environment. J Trace Elem Med Biol 19:125–140

    Article  CAS  PubMed  Google Scholar 

  • Ito R, Kuroda K, Hashimoto H, Ueda M (2016) Recovery of platinum(0) through the reduction of platinum ions by hydrogenase-displaying yeast. AMB Express 6:88

    Article  PubMed  PubMed Central  Google Scholar 

  • Jansen G, Wu C, Schade B, Thomas DY, Whiteway M (2005) Drag&Drop cloning in yeast. Gene 344:43–51

    Article  CAS  PubMed  Google Scholar 

  • Kambe-Honjoh H, Ohsumi K, Shimoi H, Nakajima H, Kitamoto K (2000) Molecular breeding of yeast with higher metal-adsorption capacity by expression of histidine-repeat insertion in the protein anchored to the cell wall. J Gen Appl Microbiol 46:113–117

    Article  CAS  PubMed  Google Scholar 

  • Kotrba P, Rumi T (2010) Surface display of metal fixation motifs of bacterial P1-type ATPase specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    Article  PubMed  Google Scholar 

  • Krämer U (2010) Metal hyperaccumulation in plants. Annu Rev Plant Biol 61:517–534

    Article  PubMed  Google Scholar 

  • Krzciuk K, Gałuszka A (2015) Prospecting for hyperaccumulators of trace elements: a review. Crit Rev Biotechnol 35:522–532

    Article  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-his. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface engineered yeast displaying a histidine oligopeptide (hexa-his) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  PubMed  Google Scholar 

  • Kuroda K, Ebisutani K, Iida K, Nishitani T, Ueda M (2014) Enhanced adsorption and recovery of uranyl ions by NikR mutant-displaying yeast. Biomol Ther 4:390–401

    Google Scholar 

  • Kwolek-Mirek M, Zadrag-Tecza R (2014) Comparison of methods used for assessing the viability and vitality of yeast cells. FEMS Yeast Res 14:1068–1079

    CAS  PubMed  Google Scholar 

  • Lapinskas PJ, Cunningham KW, Liu XF, Fink GR, Culotta VC (1995) Mutations in PMR1 suppress oxidative damage in yeast lacking superoxide dismutase. Mol Cell Biol 15:1382–1388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lauer Júnior CM, Bonatto D, Mielniczki-Pereira AA, Schuch AZ, Dias JF, Yoneama ML, Pêgas Henriques JA (2008) The Pmr1 protein, the major yeast Ca2+-ATPase in the Golgi, regulates intracellular levels of the cadmium ion. FEMS Microbiol Lett 285:79–88

    Article  PubMed  Google Scholar 

  • Leitenmaier B, Küpper H (2013) Compartmentation and complexation of metals in hyperaccumulator plants. Front Plant Sci 4:374

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Ho SH, Hasunuma T, Chang JS, Ren NQ, Kondo A (2016) Recent advances in yeast cell-surface display technologies for waste biorefineries. Bioresour Technol 215:324–333

    Article  CAS  PubMed  Google Scholar 

  • Machado MD, Santos MS, Gouveia C, Soares HM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  PubMed  Google Scholar 

  • Machado MD, Janssens S, Soares HM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106:1792–1804

    Article  CAS  PubMed  Google Scholar 

  • Massé E, Arguin M (2005) Ironing out the problem: new mechanisms of iron homeostasis. Trends Biochem Sci 30:462–468

    Article  PubMed  Google Scholar 

  • Mosa KA, Saadoun I, Kumar K, Helmy M, Dhankher OP (2016) Potential biotechnological strategies for the cleanup of heavy metals and metalloids. Front Plant Sci 7:303

    Article  PubMed  PubMed Central  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nakajima H, Iwasaki T, Kitamoto K (2001) Metalloadsorption by Saccharomyces cerevisiae cells expressing invertase-metallothionein (Suc2-Cup1) fusion protein localized to the cell surface. J Gen Appl Microbiol 47:47–51

    Article  CAS  PubMed  Google Scholar 

  • Ofiteru AM, Ruta LL, Rotaru C, Dumitru I, Ene CD, Neagoe A, Farcasanu IC (2012) Overexpression of the PHO84 gene causes heavy metal accumulation and induces Ire1p-dependent unfolded protein response in Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 94:425–435

    Article  CAS  PubMed  Google Scholar 

  • Pollard AJ, Reeves RD, Baker AJ (2014) Facultative hyperaccumulation of heavy metals and metalloids. Plant Sci 217-218:8–17

    Article  CAS  PubMed  Google Scholar 

  • Rascio N, Navari-Izzo F (2011) Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci 180:169–181

    Article  CAS  PubMed  Google Scholar 

  • Ratherford JC, Bird AJ (2004) Metal-responsive transcription factors that regulate iron, zinc, and copper homeostasis in eukaryotic cells. Eukaryot Cell 3:1–13

    Article  Google Scholar 

  • Reddi AR, Jensen LT, Culotta VC (2009) Manganese homeostasis in Saccharomyces cerevisiae. Chem Rev 109:4722–4732

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenfeld L, Reddi AR, Leung E, Aranda K, Jensen LT, Culotta VC (2010) The effect of phosphate accumulation on metal ion homeostasis in Saccharomyces cerevisiae. J Biol Inorg Chem 15:1051–1062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    Article  CAS  PubMed  Google Scholar 

  • Sharma SS, Dietz KJ, Mimura T (2016) Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant Cell Environ 39:1112–1126

    Article  CAS  PubMed  Google Scholar 

  • Sherman F (2002) Getting started with yeast. Methods Enzymol 350:3–41

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Kuroda K, Duc Nguyen H, Mori T, Zou W, Ueda M (2006) Detection of protein-protein interactions by a combination of a novel cytoplasmic membrane targeting system of recombinant proteins and fluorescence resonance energy transfer. Appl Microbiol Biotechnol 70:451–457

    Article  CAS  PubMed  Google Scholar 

  • Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast–arming technology. Anal Sci 25:41–49

    Article  CAS  PubMed  Google Scholar 

  • Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    Article  CAS  PubMed  Google Scholar 

  • Soares EV, Soares HM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19:1066–1083

    Article  PubMed  Google Scholar 

  • Soares EV, Soares HM (2013) Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 97:6667–6675

    Article  CAS  PubMed  Google Scholar 

  • Van der Heggen M, Martins S, Flores G, Soares EV (2010) Lead toxicity in Saccharomyces cerevisiae. Appl Microbiol Biotechnol 88:1355–1361

    Article  CAS  PubMed  Google Scholar 

  • Van Ho A, Ward DM, Kaplan J (2002) Transition metal transport in yeast. Annu Rev Microbiol 56:237–261

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The research leading to these results has received funding from the Romanian—EEA Research Program operated by the Ministry of National Education under the EEA Financial Mechanism 2009-2014 and Project Contract No 21 SEE/30.06.2014.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Cornelia Farcasanu.

Ethics declarations

Funding

This study was funded by the EEA Financial Mechanism 2009–2014 (Contract No 21 SEE/30.06.2014).

Conflict of interest

The authors declare that they have no conflict of interest.

This article does not contain any studies with human participants or animals performed by any of the authors.

Electronic supplementary material

ESM 1

(PDF 407 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruta, L.L., Kissen, R., Nicolau, I. et al. Heavy metal accumulation by Saccharomyces cerevisiae cells armed with metal binding hexapeptides targeted to the inner face of the plasma membrane. Appl Microbiol Biotechnol 101, 5749–5763 (2017). https://doi.org/10.1007/s00253-017-8335-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-017-8335-0

Keywords

Navigation