Skip to main content

Hyperaccummulation: A Key to Heavy Metal Bioremediation

  • Chapter
  • First Online:
Bio-Geo Interactions in Metal-Contaminated Soils

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

As environmental issues become more and more stringent, the biotechnological approaches to maintain clean environments are receiving increasing attention. Heavy metal pollution is of great concern as it ultimately forces heavy metals into the food chain leading to serious ecological and health problems. Removal of excess heavy metals from contaminated sites could be achieved by means of organisms that bioaccumulate heavy metals without developing toxicity symptoms, features that are characteristic to hyperaccumulating plants. This review focuses on the applicability of hyperaccumulation phenomenon to heavy metal bioremediation as well as on the possibility to extend the hyperaccumulation concept to organisms other than plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Asemaneh T, Ghaderian SM, Crawford SA, Marshall AT, Baker AJM (2006) Cellular and subcellular compartmentation of Ni in the Eurasian serpentine plants Alyssum bracteatum, Alyssum murale (Brassicaceae) and Cleome heratensis (Capparaceae). Planta 225:193–202

    PubMed  CAS  Google Scholar 

  • Assunção AGL, Schat H, Aarts MGM (2003) Thlaspi caerulescens, an attractive model species to study heavy metal hyperaccumulation in plants. New Phytol 159:351–360

    Google Scholar 

  • Baker AJM (1981) Accumulation and excluders – strategies in the response of plants to heavy metals. J Plant Nutr 3:643–654

    CAS  Google Scholar 

  • Baker AJM (2002) The use of tolerant plants and hyperaccumulators. In: Wong MH, Bradshaw AD (eds) Restoration and management of derelict land: modern approaches, [derived from an Advanced Study Institute], Kowloon, China, Nov 2000, pp 138–148

    Google Scholar 

  • Baker AJM, Brooks RR (1989) Terrestrial higher plants which hyperaccumulate metallic elements – a review of their distribution, ecology and phytochemistry. Biorecovery 1:81–126

    CAS  Google Scholar 

  • Baker AJM, McGrath SP, Sidoli CMD, Reeves RD (1994) The possibility of in situ heavy metal decontamination of polluted soils using crops of metal-accumulating plants. Resour Conservat Recycl 11:41–49

    Google Scholar 

  • Baker AJM, McGrath SP, Reeves RD, Smith JAC (2000) Metal hyperaccummulator plants: a review of the ecology and physiology of a biological resource for phytoremediation of metal-polluted soils. In: Terry N, Baelos G (eds) Phytoremediation of contaminated soil and water. Lewis, Boca Raton, FL, pp 85–107

    Google Scholar 

  • Basic N, Salamin N, Keller C, Galland N, Besnard G (2006) Cadmium hyperaccumulation and genetic differentiation of Thlaspi caerulescens populations. Biochem Syst Ecol 34:667–677

    CAS  Google Scholar 

  • Becher M, Talke IN, Krall L, Krämer U (2004) Cross-species microarray transcript profiling reveals high constitutive expression of metalhomeostasis genes in shoots of the zinc hyperaccumulator Arabidopsis halleri. Plant J 37:251–268

    PubMed  CAS  Google Scholar 

  • Bernard C, Roosens N, Czernic P, Lebrun M, Verbruggen N (2004) A novel CPx-ATPase from the cadmium hyperaccumulator Thlaspi caerulescens. FEBS Lett 569:140–148

    PubMed  CAS  Google Scholar 

  • Bert V, Macnair MR, De Lague rie P, Saumitou-Laprade P, Petit D (2000) Zinc tolerance and accumulation in metallicolous and nonmetallicolous populations of Arabidopsis halleri (Brassicaceae). New Phytol 146:225–233

    CAS  Google Scholar 

  • Bert V, Bonnin I, Saumitou-Laprade P, de Laguerie P, Petit D (2002) Do Arabidopsis halleri from nonmetallicolous populations accumulate zinc and cadmium more effectively than those from metallicolous populations? New Phytol 155:47–57

    CAS  Google Scholar 

  • Bert V, Meerts P, Saumitou-Laprade P, Salis P, Gruber W, Verbruggen N (2003) Genetic basis of Cd tolerance and hyperaccumulation in Arabidopsis halleri. Plant Soil 249:9–18

    CAS  Google Scholar 

  • Bidwell SD, Woodrow IE, Batianoff GN, Sommer-Knusden J (2002) Hyperaccumulation of manganese in the rainforest tree Austromyrtus bidwillii (Myrtaceae) from Queensland, Australia. Funct Plant Biol 29:899–905

    CAS  Google Scholar 

  • Bidwell SD, Crawford SA, Woodrow IE, Sommer-Knudsen J, Marshall AT (2004) Sub-cellular localization of Ni in the hyperaccumulator, Hybanthus floribundus (Lindley) F. Muell. Plant Cell Environ 27:705–716

    CAS  Google Scholar 

  • Bondada BR, Ma LQ (2003) Tolerance of heavy metals in vascular plants: arsenic hyperaccumulation by Chinese brake fern (Pteris vittata L.). In: Chandra S, Srivastava M (eds) Pteridology in new millenium. Kluwer, The Netherlands, pp 397–420

    Google Scholar 

  • Bondada BR, Tu S, Ma LQ (2004) Absorption of foliar-applied arsenic by the arsenic hyperaccumulating fern (Pteris vittata L.). Sci Total Environ 332:61–70

    PubMed  CAS  Google Scholar 

  • Boominathan R, Doran PM (2003) Organic acid complexation, heavy metal distribution and the effect of ATPase inhibition in hairy roots of hyperaccumulator plant species. J Biotechnol 101:131–146

    PubMed  CAS  Google Scholar 

  • Boyd RS (2010) Heavy metal pollutants and chemical ecology: exploring new frontiers. J Chem Ecol 36:46–58

    PubMed  CAS  Google Scholar 

  • Broadhurst CL, Chaney RL, Angle JS, Maugel TK, Erbe EF, Murphy CA (2004) Simultaneous hyperaccumulation of nickel, manganese, and calcium in Alyssum Leaf Trichomes. Environ Sci Technol 38:5797–5802

    PubMed  CAS  Google Scholar 

  • Brooks RR, Lee J, Reeves R, Jaffre T (1977) Detection of nickeliferous rocks by analysis of herbarium specimens of indicator plants. J Geochem Explor 7:49–58

    CAS  Google Scholar 

  • Caille N, Swanwick S, Zhao FJ, McGrath SP (2004) Arsenic hyperaccumulation by Pteris vittata arsenic contaminated soils and the effect of liming and phosphate fertilization. Environ Pollut 132:113–120

    PubMed  CAS  Google Scholar 

  • Chan DW, Son SC, Block W, Ye R, Douglas P, Pelley J, Goodarzi AA, Khanna KK, Wold MS, Taya Y, Lavin MF, Lees-Miller SP (2000) Purification and characterization of ATM from human placenta, a manganese-dependent, wortmanninsensitive serine/threonine protein kinase. J Biol Chem 275:7803–7810

    PubMed  CAS  Google Scholar 

  • Chaney RL, Angle JS, Broadhurst CL, Peters CA, Tappero RV, Sparks DL (2007) Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J Environ Qual 36:1429–1443

    PubMed  CAS  Google Scholar 

  • Chao Y, Zhang M, Feng Y, Yang X, Islam E (2010) cDNA-AFLP analysis of inducible gene expression in zinc hyperaccumulator Sedum alfredii Hance under zinc induction. Environ Exp Bot 68:107–112

    CAS  Google Scholar 

  • Cheng S (2003) Heavy metals in plants and phytoremediation: a state-of-the-art report with special reference to literature published in Chinese journals. Environ Sci Pollut Res Int 10:335–340

    PubMed  CAS  Google Scholar 

  • Clemens S, Palmgren M, Krämer U (2002) A long way ahead: understanding and engineering plant metal accumulation. Trends Plant Sci 7:309–315

    PubMed  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatin biosynthesis and function in heavy-metal detoxification. Curr Opin Plant Biol 3:211–216

    PubMed  CAS  Google Scholar 

  • Corem S, Carpaneto A, Soliani P, Cornara L, Gambale F, Scholz-Starke J (2009) Response to cytosolic nickel of Slow Vacuolar channels in the hyperaccumulator plant Alyssum bertolonii. Eur Biophys J 38:495–501

    PubMed  CAS  Google Scholar 

  • Cosio C, Martinoia E, Keller C (2004) Hyperaccumulation of cadmium and zinc in Thlaspi caerulescens and Arabidopsis halleri at the leaf cellular level. Plant Physiol 134:716–725

    PubMed  CAS  Google Scholar 

  • de la Fuente V, Rodriguez N, Diez-Garretas B, Rufo L, Asensi A, Amils R (2007) Nickel distribution in the hyperaccumulator Alyssum serpyllifolium Desf. spp. from the Iberian Peninsula. Plant Biosyst 141:170–180

    Google Scholar 

  • Dhankher OP, Li Y, Rosen BP, Shi J, Salt D, Senecoff JF, Sashti NA, Meagher RB (2002) Engineering tolerance and hyperaccumulation of arsenic in plants by combining arsenate reductase and g-glutamylcysteine synthetase expression. Nat Biotechnol 20:1140–1145

    PubMed  CAS  Google Scholar 

  • Dhankher OP, Shasti NA, Rosen BP, Fuhrmann M, Meagher RB (2003) Increased cadmium tolerance and accumulation by plants expressing bacterial arsenate reductase. New Phytol 159:431–441

    CAS  Google Scholar 

  • Dong R, Formentin E, Losseso C, Carimi F, Benedetti P, Terzi M, Lo Schiavo F (2005) Molecular cloning and characterization of a phytochelatin synthase gene, PvPCS1, from Pteris vittata L. J Ind Microbiol Biotechnol 32:527–533

    PubMed  CAS  Google Scholar 

  • Duffus JH (2002) “Heavy metals” a meaningless term? (IUPAC Technical Report). Pure Appl Chem 74:793–807

    CAS  Google Scholar 

  • Duruibe JO, Ogwoegbu MOC, Egwurugwu JN (2007) Heavy metal pollution and human biotoxic effects. Int J Phys Sci 2:112–118

    Google Scholar 

  • Ebbs S, Lau I, Ahner B, Kochian L (2002) Phytochelatin synthesis is not responsible for Cd tolerance in the Zn/Cd hyperaccumulator Thlaspi caerulescens (J. & C. Presl). Planta 214:635–640

    PubMed  CAS  Google Scholar 

  • Erikson KM, Aschner M (2003) Manganese neurotoxicity and glutamate-GABA interaction. Neurochem Int 43:475–480

    PubMed  CAS  Google Scholar 

  • Farinati S, DalCorso G, Bona E, Corbella M, Lampis S, Cecconi D, Polati R, Berta G, Vallini G, Furini A (2009) Proteomic analysis of Arabidopsis halleri shoots in response to the heavy metals cadmium and zinc and rhizosphere microorganisms. Proteomics 9:4837–4850

    PubMed  CAS  Google Scholar 

  • Fattorini D, Notti A, Halt MN, Gambi MC, Regoli F (2005) Levels and chemical speciation of arsenic in polychaetes: a review. Mar Ecol 26:255–264

    CAS  Google Scholar 

  • Fattorini D, Notti A, Nigro M, Regoli F (2010) Hyperaccumulation of vanadium in the Antarctic polychaete Perkinsiana littoralis as a natural chemical defense against predation. Environ Sci Pollut Res 17:220–228

    CAS  Google Scholar 

  • Fernando DR, Batianoff GN, Baker AJM, Woodrow IE (2006) In vivo localization of manganese in the hyperaccumulator Gossia bidwillii (Benth.) N. Snow & Guymer (Myrtaceae) by cryo-SEM/EDAX. Plant Cell Environ 29:1012–1020

    PubMed  CAS  Google Scholar 

  • Fernando DR, Baker AJM, Woodrow IE, Batianoff GN, Bakkaus EJ, Collins RN (2007) Variability of Mn hyperaccumulation in the Australian rainforest tree Gossia bidwillii (Myrtaceae). Plant Soil 293:145–152

    CAS  Google Scholar 

  • Fernando DR, Woodrow IE, Jaffré T, Dumontet V, Marshall AT, Baker AJM (2008) Foliar manganese accumulation bynMaytenus founieri (Celastraceae) in its native New Caledonian habitats: populational variation and localization by X-ray microanalysis. New Phytol 177:178–185

    PubMed  CAS  Google Scholar 

  • Fernando DR, Guymer G, Reeves RD, Woodrow IE, Baker AJ, Batianoff GN (2009) Foliar Mn accumulation in eastern Australian herbarium specimens: prospecting for ‘new’ Mn hyperaccumulators and potential applications in taxonomy. Ann Bot 103:93–939

    Google Scholar 

  • Francesconi K, Visoottiviseth P, Sridokchan W, Goessler W (2002) Arsenic species in an As hyperaccumulating fern, Pityrogramma calomelanos: a potential phytoremediator of As-contaminated soils. Sci Total Environ 284:27–35

    PubMed  CAS  Google Scholar 

  • Fraústo da Silva JJR, Williams RJP (2001) The biological chemistry of the elements: the inorganic chemistry of life, 2nd edn. Oxford University Press, Oxford

    Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Albrecht C, Peer W, Pickering IJ, Salt DE (2004) Increased glutathione biosynthesis plays a role in nickel tolerance in Thlaspi nickel hyperaccumulators. Plant Cell 16:2176–2191

    PubMed  CAS  Google Scholar 

  • Freeman JL, Persans MW, Nieman K, Salt DE (2005) Nickel and cobalt resistance engineered in Escherichia coli by overexpression of serine acetyltransferase from the nickel hyperaccumulator plant Thlaspi goesingense. Appl Environ Microb 71:8627–8633

    CAS  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    PubMed  CAS  Google Scholar 

  • Gerber GB, Leonard A, Hantson P (2002) Carcinogenicity, mutagenicity and teratogenicity of manganese compounds. Crit Rev Oncol Hematol 42:25–34

    PubMed  CAS  Google Scholar 

  • Gibbs PE, Bryan GW, Ryan KP (1981) Copper accumulation by the polychaete Melinna palmata: an antipredation mechanism? J Mar Biol Ass UK 61:707–722

    CAS  Google Scholar 

  • Gifford S, Dunstan RH, O’Connor W, Koller CE, MacFarlane GR (2007) Aquatic zooremediation: deploying animals to remediate contaminated aquatic environments. Trends Biotechnol 25:60–65

    PubMed  CAS  Google Scholar 

  • Gispert C, Ros R, de Haro A, Walker DJ, Pilar Bernal M, Serrano R, Avino JN (2003) A plant genetically modified that accumulates Pb is especially promising for phytoremediation. Biochem Biophys Res Commun 303:440–445

    Google Scholar 

  • Godbold DL, Horst WJ, Collins JC, Thurman DA, Marschner H (1984) Accumulation of zinc and organic acids in roots of zinc tolerant and non-tolerant ecotypes of Deschampsia caespitosa. J Plant Physiol 116:59–69

    CAS  Google Scholar 

  • Hammond JP, Bowen HC, White PJ, Mills V, Pyke KA, Baker AJ, Whiting SN, May ST, Broadley MR (2006) A comparison of the Thlaspi caerulescens and Thlaspi arvense shoot transcriptomes. New Phytol 170:239–260

    PubMed  CAS  Google Scholar 

  • Hanikenne M, Talke IN, Haydon MJ, Lanz C, Nolte A, Motte P, Kroymann J, Weigel D, Krämer U (2008) Evolution of metal hyperaccumulation required cis-regulatory changes and triplication of HMA4. Nature 453:391–395

    PubMed  CAS  Google Scholar 

  • Hart JJ, Welch RM, Norvell WA, Kochian LV (2002) Transport interactions between cadmium and zinc in roots of bread and durum wheat seedlings. Physiol Plant 116:73–78

    PubMed  CAS  Google Scholar 

  • Higuchi K, Kanazawa K, Nishizawa NK, Chino M, Mori S (1994) Purification and characterization of nicotianamine synthase from Fe-deficient barley roots. Plant Soil 165:173–179

    CAS  Google Scholar 

  • Honjo T, Hatta A, Taniguchi K (1984) Characterization of heavy metals in indicator plants – studies on the accumulation of lead and tolerance of gregarious fern, Athyrium yokoscense, in the polluted areas from the lead tile of the ruins of Kanazawa Castle, now the campus of Kanazawa University. J Phytogeogr Taxon 32:68–80

    Google Scholar 

  • Ingle RA, Mugford ST, Rees JD, Campbell MM, Smith JAC (2005a) Constitutively high expression of histidine biosynthetic pathway contributes to nickel tolerance in hyperaccumulator plants. Plant Cell 17:2089–2106

    PubMed  CAS  Google Scholar 

  • Ingle RA, Smith JAC, Sweetlove LJ (2005b) Responses to nickel in the proteome of the hyperaccumulator Alyssum lesbiacum. Biometals 18:627–641

    PubMed  CAS  Google Scholar 

  • Ingle RA, Fricker MD, Smith JAC (2008) Evidence for nickel/proton antiport activity at the tonoplast of the hyperaccumulator plant Alyssum lesbiacum. Plant Biol 10:746–753

    PubMed  CAS  Google Scholar 

  • Ishii T, Otake T, Okoshi K, Nakahara M, Nakamura R (1994) Intracellular localization of vanadium in the fan worm Pseudopotamilla occelata. Mar Biol 121:143–151

    CAS  Google Scholar 

  • Kambe-Honjoh H, Ohsumi K, Shimoi H, Nakajima H, Kitamoto K (2000) Molecular breeding of yeast with higher metal-adsorption capacity by expression of histidine-repeat insertion in the protein anchored to the cell wall. J Gen Appl Microbiol 46:113–117

    PubMed  CAS  Google Scholar 

  • Kashem MA, Singh BR, Kubota H, Sugawara R, Kitajima N, Kondo T, Kawai S (2010) Zinc tolerance and uptake by Arabidopsis halleri ssp. gemmifera grown in nutrient solution. Environ Sci Pollut Res 17:1174–1176

    CAS  Google Scholar 

  • Kerkeb L, Krämer U (2003) The role of free histidine in xylem loading of nickel in Alyssum lesbiacum and Brassica juncea. Plant Physiol 131:716–724

    PubMed  CAS  Google Scholar 

  • Kotrba P, Rumi T (2010) Surface display of metal fixation motifs of bacterial P1-type ATPase specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622

    PubMed  CAS  Google Scholar 

  • Krämer U (2005) Phytoremediation: novel approaches to cleaning up polluted soils. Curr Opin Biotechnol 16:133–141

    PubMed  Google Scholar 

  • Krämer U, Cotter-Howells JD, Charnock JM, Baker AJM, Smith JAC (1996) Free histidine as a metal chelator in plants that accumulate nickel. Nature 379:635–638

    Google Scholar 

  • Krämer U, Pickering IJ, Prince RC, Raskin I, Salt DE (2000) Subcellular localization and speciation of nickel in hyperaccumulator and non-accumulator Thlaspi species. Plant Physiol 122:1343–1353

    PubMed  Google Scholar 

  • Krotz RM, Evangelou BP, Wagner GJ (1989) Relationships between cadmium, zinc, Cd-peptide, and organic acid in tobacco suspension cells. Plant Physiol 91:780–787

    PubMed  CAS  Google Scholar 

  • Kumar NPBA, Dushenkov V, Motto H, Raskin I (1995) Phytoextraction: the use of plants to remove heavy metals from soils. Environ Sci Technol 29:1232–1238

    PubMed  CAS  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, McGrath SP (2000) Cellular compartmentation of cadmium and zinc in relation to other elements in the hyperaccumulator Arabidopsis halleri. Planta 212:75–84

    PubMed  Google Scholar 

  • Küpper H, Lombi E, Zhao FJ, Wieshammer G, McGrath SP (2001) Cellular compartmentation of nickel in the hyperaccumulators Alyssum lesbiacum, Alyssum bertolonii and Thlaspi goesingense. J Exp Bot 52:2291–2300

    PubMed  Google Scholar 

  • Küpper H, Mijovilovich A, Meyer-Klaucke W, Kroneck PMH (2004) Tissue- and age-dependent differences in the complexation of cadmium and zinc in the Cd/Zn hyperaccumulator Thlaspi caerulescens (Ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiol 134:748–757

    PubMed  Google Scholar 

  • Küpper H, Götz B, Mijovilovich A, Küpper FC, Meyer-Klaucke W (2009) Complexation and toxicity of copper in higher plants. I. Characterization of copper accumulation, speciation, and toxicity in Crassula helmsii as a new copper accumulator. Plant Physiol 151:702–714

    PubMed  Google Scholar 

  • Lasat MM, Baker A, Kochian L (1996) Physiological characterization of root Zn2+ absorption and translocation to shoots in Zn hyperaccumulator and nonaccumulator species of Thlaspi. Plant Physiol 112:1715–1722

    PubMed  CAS  Google Scholar 

  • Lasat MM, Baker A, Kochian L (1998) Altered Zn compartmentation in the root symplasm and stimulated Zn absorption into the leaf as mechanisms involved in Zn hyperaccumulation in Thlaspi caerulescens. Plant Physiol 118:875–883

    PubMed  CAS  Google Scholar 

  • Lasat MM, Pence NS, Garvin DF, Ebbs SD, Kochian LV (2000) Molecular physiology of zinc transport in the Zn hyperaccumulator Thlaspi caerulescens. J Exp Bot 51:71–79

    PubMed  CAS  Google Scholar 

  • Lei M, Chen TB, Huang ZC, Wang YD, Huang YY (2008) Simultaneous compartmentalization of lead and arsenic in co-hyperaccumulator Viola principis H. de Boiss.: an application of SRXRF microprobe. Chemosphere 72:1491–1496

    PubMed  CAS  Google Scholar 

  • Li WC, Ye ZH, Wong MH (2010) Metal mobilization and production of short-chain organic acids by rhizosphere bacteria associated with a Cd/Zn hyperaccumulating plant, Sedum alfredii. Plant Soil 326:453–467

    CAS  Google Scholar 

  • Liu XM, Wu QT, Banks MK (2005) Effect of simultaneous establishment of Sedum alfridii and Zea mays on heavy metal accumulation in plants. Int J Phytoremediation 7:43–53

    PubMed  CAS  Google Scholar 

  • Lombi E, Zhao F, McGrath S, Young S, Sacchi G (2001) Physiological evidence for a high-affinity cadmium transporter highly expressed in a Thlaspi caerulescens ecotype. New Phytol 149:53–60

    CAS  Google Scholar 

  • Lone MI, He Z, Stoffella PJ, Yang X (2008) Phytoremediation of heavy metal polluted soils and water: progress and perspectives. J Zhejiang Univ Sci B 9:210–220

    PubMed  CAS  Google Scholar 

  • Long XX, Zhang YG, Dai J, Zhou Q (2009) Zinc, cadmium and lead accumulation and characteristics of rhizosphere microbial population associated with hyperaccumulator Sedum Alfredii Hance under natural conditions. Bull Environ Contam Toxicol 82:460–467

    PubMed  CAS  Google Scholar 

  • Lu L, Tian S, Yang X, Wang X, Brown P, Li T, He Z (2008) Enhanced root-to-shoot translocation of cadmium in the hyperaccumulating ecotype of Sedum alfredii. J Exp Bot 59:3203–3213

    PubMed  CAS  Google Scholar 

  • Ma JF, Hiradate S (2000) Form of aluminium for uptake and translocation in buckwheat (Fagopyrum esculentum Moench). Planta 211:355–360

    PubMed  CAS  Google Scholar 

  • Ma JF, Zheng SJ, Matsumoto H, Hiradate S (1997) Detoxifying aluminium with buckwheat. Nature 390:569–570

    Google Scholar 

  • Ma LQ, Komar KM, Tu C, Zhang W, Cai Y, Kennelley ED (2001) A fern that hyperaccumulates arsenic. Nature 409:579

    PubMed  CAS  Google Scholar 

  • Macnair MR (2002) Within and between population genetic variation for zinc accumulation in Arabidopsis halleri. New Phytol 155:59–66

    CAS  Google Scholar 

  • Macnair MR (2003) The hyperaccumulation of metals by plants. Adv Bot Res 40:63–106

    CAS  Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58:201–235

    PubMed  CAS  Google Scholar 

  • Mari S, Gendre D, Pianelli K, Ouerdane L, Lobinski R, Briat JF, Lebrun M, Czernic P (2006) Root-to-shoot long-distance circulation of nicotianamine and nicotianamine-nickel chelates in the metal hyperaccumulator Thlaspi caerulescens. J Exp Bot 57:4111–4122

    PubMed  CAS  Google Scholar 

  • Marquès L, Cossegal M, Bodin S, Czernic P, Lebrun M (2004) Heavy metal specificity of cellular tolerance in two hyperaccumulating plants, Arabidopsis halleri and Thlaspi caerulescens. New Phytol 164:289–295

    Google Scholar 

  • Martinoia E, Maeshima M, Neuhaus HE (2007) Vacuolar transporters and their essential role in plant metabolism. J Experim Bot 58:83–102

    CAS  Google Scholar 

  • McGrath SP, Zhao FJ (2003) Phytoextraction of metals and metalloids from contaminated soils. Curr Opin Biotechnol 14:277–282

    PubMed  CAS  Google Scholar 

  • McGrath SP, Zhao FJ, Lombi E (2001) Plant and rhizosphereprocesses involved in phytoremediation of metal-contaminated soils. Plant Soil 232:207–214

    CAS  Google Scholar 

  • McGrath SP, Lombi E, Gray CW, Caille N, Dunham SJ, Zhao FJ (2006) Field evaluation of Cd and Zn phytoextraction potential by the hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environ Pollut 141:115–125

    PubMed  CAS  Google Scholar 

  • McNear DH, Peltier E, Everhart J, Chaney RL, Sutton S, Newville M, Rivers M, Sparks DL (2005) Application of quantitative fluorescence and absorption-edge computed microtomography to image metal compartmentalization in Alyssum murale. Environ Sci Technol 39:2210–2218

    PubMed  CAS  Google Scholar 

  • Mesjasz-Przybyłowicz J, Balkwill K, Przybyłowicz WJ, Annegarn HJ (1994) Proton microprobe and X-ray fluorescence investigations of nickel distribution in serpentine flora fromSouth Africa. Nucl Instrum Meth Phys Res B 89:208–212

    Google Scholar 

  • Mijovilovich A, Leitenmaier B, Meyer-Klaucke W, Kroneck PMH, Goötz B, Küpper H (2009) Complexation and toxicity of copper in higher plants. II. Different mechanisms for copper versus cadmium detoxification in the copper-sensitive cadmium/zinc hyperaccumulator Thlaspi caerulescens (Ganges ecotype). Plant Physiol 151:715–731

    PubMed  CAS  Google Scholar 

  • Mills R, Krijger G, Baccarini P, Hall J, Williams L (2003) Functional expression of AtHMA4, a P1B-type ATPase of the Zn/Co/Cd/Pb subclass. Plant J 35:164–176

    PubMed  CAS  Google Scholar 

  • Milner MJ, Kochian LV (2008) Investigating heavy-metal hyperaccumulation using Thlaspi caerulescens as a model system. Ann Bot Lond 102:3–13

    CAS  Google Scholar 

  • Morishita T, Boratynski K (1992) Accumulation of Cd and other metals in organs of plants growing around metal smeltersin Japan. Soil Sci Pl Nutr 38:781–785

    CAS  Google Scholar 

  • Murai T, Ueda M, Yamamura M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    PubMed  CAS  Google Scholar 

  • Nakajima H, Iwasaki T, Kitamoto K (2001) Metalloadsorption by Saccharomyces cerevisiae cells expressing invertase-metallothionein (Suc2-Cup1) fusion protein localized to the cell surface. J Gen Appl Microbiol 47:47–51

    PubMed  CAS  Google Scholar 

  • Ni TH, Wei YZ (2003) Subcellular distribution of cadmium in mining ecotype Sedum alfredii. Acta Bot Sin 45:925–928

    Google Scholar 

  • Nigam R, Srivastava S, Prakash S, Srivastava MM (2001) Cadmium mobilisation and plant availability: the impact of organic acids commonly exuded from roots. Plant Soil 230:107–113

    CAS  Google Scholar 

  • Olguin EJ (2003) Phycoremediation: key issues for cost-effective nutrient removal processes. Biotechnol Adv 22:81–91

    PubMed  CAS  Google Scholar 

  • Papoyan A, Kochian LV (2004) Identification of Thlaspi caerulescens genes that may be involved in heavy metal hyperaccumulation and tolerance. Characterization of a novel heavy metal transporting ATPase. Plant Physiol 136:3814–3823

    PubMed  CAS  Google Scholar 

  • Papoyan A, Pineros M, Kochian LV (2007) Plant Cd2+ and Zn2+ status effects on root and shoot heavy metal accumulation in Thlaspi caerulescens. New Phytol 175:51–58

    PubMed  CAS  Google Scholar 

  • Patel KS, Shrivas K, Brandt RN, Jakubowski WC, Hoffmann P (2005) Arsenic contamination in water, soil, sediment and rice of central India. Environ Geochem Health 27:131–145

    PubMed  CAS  Google Scholar 

  • Pauwels M, Frérot H, Bonnin I, Saumitou-Laprade P (2006) A broadscale study of population differentiation for Zn-tolerance in an emerging model species for tolerance study: Arabidopsis halleri (Brassicaceae). J Evol Biol 19:1838–1850

    PubMed  CAS  Google Scholar 

  • Pence NS, Larsen PB, Ebbs SD, Letham DL, Lasat MM, Garvin DF, Eide D, Kochian LV (2000) The molecular basis for heavy metal hyperaccumulation in Thlaspi caerulescens. Proc Natl Acad Sci USA 97:4956–4960

    PubMed  CAS  Google Scholar 

  • Persans MW, Yan X, Patnoe J-MML, Krämer U, Salt DE (1999) Molecular dissection of the role of histidine in nickel hyperaccumulation in Thlaspi goesingense (Hálácsy). Plant Physiol 121:1117–1126

    PubMed  CAS  Google Scholar 

  • Persans MW, Nieman K, Salt DE (2001) Functional activity and role of cation-efflux family members in Ni hyperaccumulation in Thlaspi goesingense. Proc Natl Acad Sci USA 98:9995–10000

    PubMed  CAS  Google Scholar 

  • Pianelli K, Mari S, Marques L, Lebrun M, Czernic P (2005) Nicotianamine over-accumulation confers resistance to nickel in Arabidopsis thaliana. Transgenic Res 14:739–748

    PubMed  CAS  Google Scholar 

  • Pollard AJ, Powell KD, Harper FA, Smith JAC (2002) The genetic basis of metal hyperaccumulation in plants. Crit Rev Plant Sci 21:539–566

    CAS  Google Scholar 

  • Reeves RD (2003) Tropical hyperaccumulators of metals and their potential for phytoextraction. Plant Soil 249:57–65

    CAS  Google Scholar 

  • Reeves RD, Adigüzel NN (2004) Rare plants and nickel accumulators from Turkish serpentine soils, with special reference to Centaurea species. Turk J Bot 28:147–153

    Google Scholar 

  • Reeves RD, Baker AJM (2000) Metal-accumulating plants. In: Raskin I, Ensley BD (eds) Phytoremediation of toxic metals: using plants to clean up the environment. Wiley, New York, NY, pp 193–221

    Google Scholar 

  • Rigola D, Fiers M, Vurro E, Aarts MGM (2006) The heavy metal hyperaccumulator Thlaspi caerulescens expresses many species-specific genes, as identified by comparative expressed sequence tag analysis. New Phytol 170:753–766

    PubMed  CAS  Google Scholar 

  • Roosens N, Bernard C, Leplae R, Verbruggen N (2004) Adaptive evolution of metallothionein 3 in the Cd/Zn hyperaccumulator Thlaspi caerulescens. Z Naturforsch 60:224–228

    Google Scholar 

  • Rugh CL, Wilde HD, Stack NM, Thompson DM, Summers AO, Meagher RB (1996) Mercuric ion reduction and resistance in transgenic Arabidopsis thaliana plants expressing a modified bacterial merA gene. Proc Natl Acad Sci USA 93:3182–3187

    PubMed  CAS  Google Scholar 

  • Ruta LL, Paraschivescu CC, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    PubMed  CAS  Google Scholar 

  • Sahi SV, Bryant NL, Sharma NC, Singh SR (2002) Characterization of a lead hyperaccumulator shrub, Sesbania drummondii. Environ Sci Technol 36:4676–4680

    PubMed  Google Scholar 

  • Saito A, Higuchi K, Hirai M, Nakane R, Yoshiba M, Tadano T (2005) Selection and characterization of a nickel-tolerant cell line from tobacco (Nicotiana tabacum cv. bright yellow-2) suspension culture. Physiol Plant 125:441–453

    CAS  Google Scholar 

  • Sánchez ML (ed) (2008) Causes and effects of heavy metal pollution. Nova Science, Hauppauge

    Google Scholar 

  • Sandrini JZ, Regoli F, Fattorini D, Notti A, Inacio AF, Linde-Arias AR, Laurino J, Bainy AC, Marins LF, Monserrat JM (2006) Short-term responses to cadmium exposure in the estuarine polychaete Laeonereis acuta (polychaeta, Nereididae): subcellular distribution and oxidative stress generation. Environ Toxicol Chem 25:1337–1344

    PubMed  CAS  Google Scholar 

  • Sanità di Toppi LS, Gabbrielli R (1999) Response to cadmium in higher plants. Environ Exp Bot 41:105–130

    Google Scholar 

  • Seki H, Suzuki A (1997) A new method for the removal of toxic metal ions from acid-sensitive biomaterial. J Colloid Interface Sci 190:206–211

    PubMed  CAS  Google Scholar 

  • Seward MRD, Richardson DHS (1990) Atmospheric sources of metal pollution and effects on vegetation. In: Shaw AJ (ed) Heavy metal tolerance in plants: evolutionary aspects. CRC, Florida, pp 75–92

    Google Scholar 

  • Shen ZG, Li XD, Chen HM (2000) Comparison of elemental composition and solubility in the zinc hyperaccumulator Thlaspi caerulescens with the non-hyperaccumulator Thlaspi ochroleucum. Bull Environ Contam Toxicol 65:343–350

    PubMed  CAS  Google Scholar 

  • Shen R, Ma JF, Kyo M, Iwashita T (2002) Compartmentation of aluminium in leaves of an Al-accumulator, Fagopyrum esculentum Moench. Planta 215:394–398

    PubMed  CAS  Google Scholar 

  • Shi JY, Chen YX, Huang YY, He W (2004) SRXRF microprobe as a technique for studying elements distribution in Elsholtzia splendens. Micron 35:557–564

    PubMed  Google Scholar 

  • Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast–arming technology. Anal Sci 25:41–49

    PubMed  CAS  Google Scholar 

  • Shira C, Carpaneto A, Soliani P, Cornara L, Gambale F, Scholz-Starke J (2009) Response to cytosolic nickel of Slow Vacuolar channels in the hyperaccumulator plant Alyssum bertolonii. Eur Biophys J 38:495–501

    Google Scholar 

  • Shiraishi T, Tamada M, Saito K, Sugo T (2003) Recovery of cadmium from waste of scallop processing with amidoxime adsorbent synthesized by graftpolymerization. Radiat Phys Chem 66:43–47

    CAS  Google Scholar 

  • Smart KE, Kilburn MR, Salter CJ, Smith JAC, Grovenor CRM (2007) NanoSIMS and EPMA analysis of nickel localisation in leaves of the hyperaccumulator plant Alyssum lesbiacum. Int J Mass Spectrom 260:107–114

    CAS  Google Scholar 

  • Still ER, Williams RJP (1980) Potential methods for selective accumulation of nickel(II) ions by plants. J Inorg Biochem 13:35–40

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2005) Increase of glutathione in mine population of Sedum alfredii: a Zn hyperaccumulator and pb accumulator. Phytochem 66:2549–2556

    CAS  Google Scholar 

  • Sun Q, Ye ZH, Wang XR, Wong MH (2007) Cadmium hyperaccumulation leads to an increase of glutathione rather than phytochelatins in the cadmium hyperaccumulator Sedum alfredii. J Plant Physiol 164:1489–1498

    PubMed  CAS  Google Scholar 

  • Talke I, Hanikenne M, Krämer U (2006) Zinc-dependent global transcriptional control, transcriptional deregulation, and higher gene copy number for genes in metal homeostasis of the hyperaccumulator Arabidopsis halleri. Plant Physiol 142:148–167

    PubMed  CAS  Google Scholar 

  • Tamura H, Honda M, Sato T, Kamachi H (2005) Pb hyperaccumulation and tolerance in common buckwheat (Fagopyrum esculentum Moench). J Plant Res 118:355–359

    PubMed  Google Scholar 

  • Tolrá RP, Poschenrieder C, Barceló J (1996) Zinc hyperaccumulation in Thlaspi caerulescens. II. Influence on organic acids. J Plant Nutr 19:1541–1550

    Google Scholar 

  • Tu C, Ma LQ (2002) Effects of arsenic concentrations and forms on arsenic uptake by the hyperaccumulator Ladder Brake. J Environ Qual 31:641–647

    PubMed  CAS  Google Scholar 

  • Tuomainen MH, Nunan N, Lehesranta SJ, Tervahauta AI, Hassinen VH, Schat H, Koistinen KM, Auriola S, McNicol J, Kärenlampi SO (2006) Multivariate analysis of protein profiles of metal hyperaccumulator Thlaspi caerulescens accessions. Proteomics 6:3696–3706

    PubMed  CAS  Google Scholar 

  • Tuomainen M, Tervahauta A, Hassinen V, Schat H, Koistinen KM, Lehesranta S, Rantalainen K, Häyrinen J, Auriola S, Anttonen M, Kärenlampi S (2010) Proteomics of Thlaspi caerulescens accessions and an interaccession cross segregating for zinc accumulation. J Exper Bot 61:1075–1087

    CAS  Google Scholar 

  • Ueno D, Ma JF, Iwashita T, Zhao FJ, McGrath SP (2005) Identification of the form of Cd in the leaves of a superior Cd-accumulating ecotype of Thlaspi caerulescens using 113Cd-NMR. Planta 221:928–936

    PubMed  CAS  Google Scholar 

  • Uraguchi S, Watanabe I, Yoshitomi A, Kiyono M, Kuno K (2006) Characteristics of cadmium accumulation and tolerance in novel Cd-accumulating crops, Avena strigosa and Crotalaria juncea. J Exp Bot 57:2955–2965

    PubMed  CAS  Google Scholar 

  • Vacchina V, Mari S, Czernic P, Marques L, Pianelli K, Schaumloeffel D, Lebrun M, Lobinski R (2003) Speciation of nickel in a hyperaccumulating plant by high-performance liquid chromatography-inductively coupled plasma mass spectrometry and electrospray MS/MS assisted by cloning using yeast complementation. Anal Chem 75:2740–2745

    PubMed  CAS  Google Scholar 

  • Van de Mortel JE, Almar Villanueva L, Schat H, Kwekkeboom J, Coughlan S, Moerland PD, Loren V, van Themaat E, Koornneef M, Aarts MGM (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol 142:1127–1147

    PubMed  Google Scholar 

  • Van TK, Kang Y, Fukui T, Sakurai K, Iwasaki K, Aikawa Y, Phuong NM (2006) Arsenic and heavy metal accumulation by Athyrium yokoscense from contaminated soils. Soil Sci Plant Nutr 52:701–710

    CAS  Google Scholar 

  • Vartanian JP, Sala M, Henry M, Hobson SW, Meyerhans A (1999) Manganese cations increase the mutation rate of human immune deficiency virus type 1 ex vivo. J Gen Virol 80:1983–1986

    PubMed  CAS  Google Scholar 

  • Vera-Estrella R, Miranda-Vergara MC, Barkla BJ (2009) Zinc tolerance and accumulation in stable cell suspension cultures and in vitro regenerated plants of the emerging model plant Arabidopsis halleri (Brassicaceae). Planta 229:977–986

    PubMed  CAS  Google Scholar 

  • Verbruggen N, Hermans C, Schat H (2009) Molecular mechanisms of metal hyperaccumulation in plants. New Phytol 181:759–776

    PubMed  CAS  Google Scholar 

  • Visoottiviseth P, Francesconi K, Sridokchan W (2002) The potential of Thai indigenous plant species for the phytormediation of As contaminated land. Environ Pollut 118:453–461

    PubMed  CAS  Google Scholar 

  • Watanabe T, Moon CS, Zhang ZW, Shimbo S, Nakatsuka H, Matsuda-Inoguchi N, Higashikawa K, Ikeda M (2000) Cadmium exposure of women in general populations in Japan during 1991–1997 compared with 1977–1991. Int Arch Occup Environ Health 73:26–34

    PubMed  CAS  Google Scholar 

  • Weber M, Harada E, Vess C, von Roepenack-Lahaye E, Clemens S (2004) Comparative microarray analysis of Arabidopsis thaliana and Arabidopsis halleri roots identifies nicotianamine synthase, a ZIP transporter and other genes as potential metal hyperaccumulation factors. Plant J 37:269–281

    PubMed  CAS  Google Scholar 

  • Wei CY, Wang C, Sun X, Wang WY (2006) Factors influencing arsenic accumulation by Pteris vittata: a comparative field study at two sites. Environ Pollut 141:488–493

    PubMed  CAS  Google Scholar 

  • Wei CY, Wang C, Sun X, Wang WY (2007) Arsenic accumulation by ferns: a field survey in southern China. Environ Geochem Health 29:169–177

    PubMed  CAS  Google Scholar 

  • Wu F, Zhang G, Yu J (2003) Interaction of cadmium and four microelements for uptake and translocation in different barley genotypes. Commun Soil Sci Plant Anal 34:2003–2020

    CAS  Google Scholar 

  • Xu XH, Shi JY, Chen YX, Xue SG, Wu B, Huang YY (2006) An investigation of cellular distribution of manganese in hyperaccumulator plant Phytolacca acinosa Roxb. Using SRXRF analysis. J Environ Sci (China) 18:746–751

    CAS  Google Scholar 

  • Xue SG, Chen YX, Reeves RD, Baker AJM, Lin Q, Fernando DR (2004) Manganese uptake and accumulation by the hyperaccumulator plant Phytolacca acinosa Roxb. (Phytolaccaceae). Environ Pollut 131:393–399

    PubMed  CAS  Google Scholar 

  • Xue SG, Chen YX, Baker AJM (2005) Manganese uptake and accumulation by two populations of Phytolacca acinosa Roxb. (Phytolaccaceae). Water Air Soil Pollut 160:3–14

    CAS  Google Scholar 

  • Yanai J, Zhao FJ, McGrath SP, Kosaki T (2006) Effect of soil characteristicson Cd uptake by the hyperaccumulator Thlaspi caerulescens. Environ Pollut 139:167–175

    PubMed  CAS  Google Scholar 

  • Yang XE, Baligar VC, Foster JC, Martens DC (1997) Accumulation and transport of nickel in relation to organic acids in ryegrass and maize grown with different nickel levels. Plant Soil 196:271–276

    CAS  Google Scholar 

  • Yang LS, Peterson PJ, Williams WP, Wang WY, Hou SF, Tan JA (2002) The relationship between exposure to arsenic concentrations in drinking water and the development of skin lesions in farmers from Inner Mongolia, China. Environ Geochem Health 24:293–303

    CAS  Google Scholar 

  • Yang XE, Long XX, Ye HB, He ZL, Calvert DV, Stoffella PJ (2004) Cadmium tolerance and hyperaccumulation in a new Zn-hyperaccumulating plant species (Sedum alfredii Hance). Plant Soil 259:181–189

    CAS  Google Scholar 

  • Yang X, Li T, Yang J, He Z, Lu L, Meng F (2006) Zinc compartmentation in root, transport into xylem, and absorption into leaf cells in the hyperaccumulating species of Sedum alfredii Hance. Planta 224:185–195

    PubMed  CAS  Google Scholar 

  • Yanqun Z, Yuan L, Jianjun C, Haiyan C, Li Q, Schvartz C (2005) Hyperaccumulation of Pb, Zn and Cd in herbaceous grown on lead-zinc mining area in Yunnan, China. Environ Int 31:755–762

    PubMed  Google Scholar 

  • Zenk MH (1996) Heavy metal detoxification in higher plants: a review. Gene 179:21–30

    PubMed  CAS  Google Scholar 

  • Zhao FJ, Wang JR, Barker JHA, Schat H, Bleeker PM, McGrath SP (2003) The role of phytochelatins in arsenic tolerance in the hyperaccumulator Pteris vittata. New Phytol 159:403–410

    CAS  Google Scholar 

  • Zhao FJ, Jiang RF, Dunham SJ, McGrath SP (2006) Cadmium uptake, translocation and tolerance in the hyperaccumulator Arabidopsis halleri. New Phytol 172:646–654

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This review was done in the Romanian Consortium for the Biogeochemistry of Trace Elements with financing from National University Research Council (CNCSIS) by projects 176 and 291/2007 (codes ID 965 and 1006) and within the frame of European project UMBRELLA (FP7_ENV-2008-1 no. 226870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ileana Cornelia Farcasanu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Farcasanu, I.C., Matache, M., Iordache, V., Neagoe, A. (2012). Hyperaccummulation: A Key to Heavy Metal Bioremediation. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_13

Download citation

Publish with us

Policies and ethics