Skip to main content
Log in

Engineering of microorganisms towards recovery of rare metal ions

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

The bioadsorption of metal ions using microorganisms is an attractive technology for the recovery of rare metal ions as well as removal of toxic heavy metal ions from aqueous solution. In initial attempts, microorganisms with the ability to accumulate metal ions were isolated from nature and intracellular accumulation was enhanced by the overproduction of metal-binding proteins in the cytoplasm. As an alternative, the cell surface design of microorganisms by cell surface engineering is an emerging strategy for bioadsorption and recovery of metal ions. Cell surface engineering was firstly applied to the construction of a bioadsorbent to adsorb heavy metal ions for bioremediation. Cell surface adsorption of metal ions is rapid and reversible. Therefore, adsorbed metal ions can be easily recovered without cell breakage, and the bioadsorbent can be reused or regenerated. These advantages are suitable for the recovery of rare metal ions. Actually, the cell surface display of a molybdate-binding protein on yeast led to the enhanced adsorption of molybdate, one of the rare metal ions. An additional advantage is that the cell surface display system allows high-throughput screening of protein/peptide libraries owing to the direct evaluation of the displayed protein/peptide without purification and concentration. Therefore, the creation of novel metal-binding protein/peptide and engineering of microorganisms towards the recovery of rare metal ions could be simultaneously achieved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akthar N, Sastry S, Mohan M (1995) Biosorption of silver ions by processed Aspergillus niger biomass. Biotechnol Lett 17:551–556

    Article  CAS  Google Scholar 

  • Anonymous (1997) Arming yeast with cell-surface catalysts. Chem Eng News 75:32

    Google Scholar 

  • Bae W, Chen W, Mulchandani A, Mehra RK (2000) Enhanced bioaccumulation of heavy metals by bacterial cells displaying synthetic phytochelatins. Biotechnol Bioeng 70:518–524

    Article  CAS  Google Scholar 

  • Bae W, Wu CH, Kostal J, Mulchandani A, Chen W (2003) Enhanced mercury biosorption by bacterial cells with surface-displayed MerR. Appl Environ Microbiol 69:3176–3180

    Article  CAS  Google Scholar 

  • Berka T, Shatzman A, Zimmerman J, Strickler J, Rosenberg M (1988) Efficient expression of the yeast metallothionein gene in Escherichia coli. J Bacteriol 170:21–26

    CAS  Google Scholar 

  • Brown S (1997) Metal-recognition by repeating polypeptides. Nat Biotechnol 15:269–272

    Article  CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Dong J, Liu C, Zhang J, Xin ZT, Yang G, Gao B, Mao CQ, Liu NL, Wang F, Shao NS, Fan M, Xue YN (2006) Selection of novel nickel-binding peptides from flagella displayed secondary peptide library. Chem Biol Drug Des 68:107–112

    Article  CAS  Google Scholar 

  • Eccles H (1999) Treatment of metal-contaminated wastes: why select a biological process? Trends Biotechnol 17:462–465

    Article  CAS  Google Scholar 

  • Eide DJ (1998) The molecular biology of metal ion transport in Saccharomyces cerevisiae. Annu Rev Nutr 18:441–469

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10

    Article  CAS  Google Scholar 

  • Georgiou G, Stathopoulos C, Daugherty PS, Nayak AR, Iverson BL, Curtiss R 3rd (1997) Display of heterologous proteins on the surface of microorganisms: from the screening of combinatorial libraries to live recombinant vaccines. Nat Biotechnol 15:29–34

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  CAS  Google Scholar 

  • Holm RH, Kennepohl P, Solomon EI (1996) Structural and functional aspects of metal sites in biology. Chem Rev 96:2239–2314

    Article  CAS  Google Scholar 

  • Hou YM, Kim R, Kim SH (1988) Expression of the mouse metallothionein-I gene in Escherichia coli: increased tolerance to heavy metals. Biochim Biophys Acta 951:230–234

    CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: A review. Bioresour Technol 53:195–206

    Article  CAS  Google Scholar 

  • Khoo K, Ting Y (2001) Biosorption of gold by immobilized fungal biomass. Biochem Eng J 8:51–59

    Article  CAS  Google Scholar 

  • Kisker C, Schindelin H, Rees DC (1997) Molybdenum-cofactor-containing enzymes: structure and mechanism. Annu Rev Biochem 66:233–267

    Article  CAS  Google Scholar 

  • Kjaergaard K, Schembri MA, Klemm P (2001) Novel Zn2+-chelating peptides selected from a fimbria-displayed random peptide library. Appl Environ Microbiol 67:5467–5473

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kotrba P, Doleckova L, de Lorenzo V, Ruml T (1999) Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl Environ Microbiol 65:1092–1098

    CAS  Google Scholar 

  • Kurniawan TA, Chan GYS, Lo WH, Babel S (2006) Physico-chemical treatment techniques for wastewater laden with heavy metals. Chem Eng J 118:83–98

    CAS  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  Google Scholar 

  • Ledin M (2000) Accumulation of metals by microorganisms—processes and importance for soil systems. Earth-Sci Rev 51:1–31

    Article  CAS  Google Scholar 

  • Lee SY, Choi JH, Xu Z (2003) Microbial cell-surface display. Trends Biotechnol 21:45–52

    Article  CAS  Google Scholar 

  • Lovley DR, Coates JD (1997) Bioremediation of metal contamination. Curr Opin Biotechnol 8:285–289

    Article  CAS  Google Scholar 

  • Matsui K, Kuroda K, Ueda M (2009) Creation of a novel peptide endowing yeasts with acid tolerance using yeast cell-surface engineering. Appl Microbiol Biotechnol 82:105–113

    Article  CAS  Google Scholar 

  • Mejare M, Ljung S, Bulow L (1998) Selection of cadmium specific hexapeptides and their expression as OmpA fusion proteins in Escherichia coli. Protein Eng 11:489–494

    Article  CAS  Google Scholar 

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  Google Scholar 

  • Nriagu JO, Pacyna JM (1988) Quantitative assessment of worldwide contamination of air, water and soils by trace metals. Nature 333:134–139

    Article  CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    Article  CAS  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318

    Article  CAS  Google Scholar 

  • Pethkar AV, Kulkarni SK, Paknikar KM (2001) Comparative studies on metal biosorption by two strains of Cladosporium cladosporioides. Bioresour Technol 80:211–215

    Article  CAS  Google Scholar 

  • Reddy BR, Priya DN (2004) Solvent extraction of Ni(II) from sulfate solutions with LIX 84I: flow-sheet for the separation of Cu(II), Ni(II) and Zn(II). Anal Sci 20:1737–1740

    Article  CAS  Google Scholar 

  • Saleem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia-ul H (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161

    Article  CAS  Google Scholar 

  • Samuelson P, Wernerus H, Svedberg M, Stahl S (2000) Staphylococcal surface display of metal-binding polyhistidyl peptides. Appl Environ Microbiol 66:1243–1248

    Article  CAS  Google Scholar 

  • Samuelson P, Gunneriusson E, Nygren PA, Stahl S (2002) Display of proteins on bacteria. J Biotechnol 96:129–154

    Article  CAS  Google Scholar 

  • Savvaidis I (1998) Recovery of gold from thiourea solutions using microorganisms. Biometals 11:145–151

    Article  CAS  Google Scholar 

  • Sayers Z, Brouillon P, Vorgias CE, Nolting HF, Hermes C, Koch MH (1993) Cloning and expression of Saccharomyces cerevisiae copper-metallothionein gene in Escherichia coli and characterization of the recombinant protein. Eur J Biochem 212:521–528

    Article  CAS  Google Scholar 

  • Self WT, Grunden AM, Hasona A, Shanmugam KT (2001) Molybdate transport. Res Microbiol 152:311–321

    Article  CAS  Google Scholar 

  • Sousa C, Kotrba P, Ruml T, Cebolla A, De Lorenzo V (1998) Metalloadsorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol 180:2280–2284

    CAS  Google Scholar 

  • Tsuruta T (2004) Biosorption and recycling of gold using various microorganisms. J Gen Appl Microbiol 50:221–228

    Article  CAS  Google Scholar 

  • Ueda M (2004) Future direction of molecular display by yeast-cell surface engineering. J Mol Catal B 28:139–143

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A (2000a) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    CAS  Google Scholar 

  • Ueda M, Tanaka A (2000b) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  Google Scholar 

  • Vasudevan P, Padmavathy V, Dhingra SC (2002) Biosorption of monovalent and divalent ions on baker's yeast. Bioresour Technol 82:285–289

    Article  CAS  Google Scholar 

  • Vijayaraghavan K, Jegan J, Palanivelu K, Velan M (2004) Removal of nickel(II) ions from aqueous solution using crab shell particles in a packed bed up-flow column. J Hazard Mater 113:223–230

    Article  CAS  Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806

    Article  CAS  Google Scholar 

  • Volesky B, Weber J, Park JM (2003) Continuous-flow metal biosorption in a regenerable Sargassum column. Water Res 37:297–306

    Article  CAS  Google Scholar 

  • Wagner UG, Stupperich E, Kratky C (2000) Structure of the molybdate/tungstate binding protein mop from Sporomusa ovata. Structure 8:1127–1136

    Article  CAS  Google Scholar 

  • Wang HL, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wittrup KD (2001) Protein engineering by cell-surface display. Curr Opin Biotechnol 12:395–399

    Article  CAS  Google Scholar 

  • Yong P, Rowson NA, Farr JPG, Harris IR, Macaskie LE (2002) Bioaccumulation of palladium by Desulfovibrio desulfuricans. J Chem Technol Biotechnol 77:593–601

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, K., Ueda, M. Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87, 53–60 (2010). https://doi.org/10.1007/s00253-010-2581-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-2581-8

Keywords

Navigation