Skip to main content

Advertisement

Log in

Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review

  • Review Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

The release of heavy metals into the environment, mainly as a consequence of anthropogenic activities, constitutes a worldwide environmental pollution problem. Unlike organic pollutants, heavy metals are not degraded and remain indefinitely in the ecosystem, which poses a different kind of challenge for remediation. It seems that the “best treatment technologies” available may not be completely effective for metal removal or can be expensive; therefore, new methodologies have been proposed for the detoxification of metal-bearing wastewaters. The present work reviews and discusses the advantages of using brewing yeast cells of Saccharomyces cerevisiae in the detoxification of effluents containing heavy metals. The current knowledge of the mechanisms of metal removal by yeast biomass is presented. The use of live or dead biomass and the influence of biomass inactivation on the metal accumulation characteristics are outlined. The role of chemical speciation for predicting and optimising the efficiency of metal removal is highlighted. The problem of biomass separation, after treatment of the effluents, and the use of flocculent characteristics, as an alternative process of cell–liquid separation, are also discussed. The use of yeast cells in the treatment of real effluents to bridge the gap between fundamental and applied studies is presented and updated. The convenient management of the contaminated biomass and the advantages of the selective recovery of heavy metals in the development of a closed cycle without residues (green technology) are critically reviewed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Aguilar-Uscanga B, François JM (2003) A study of the yeast cell wall composition and structure in response to growth conditions and mode of cultivation. Lett Appl Microbiol 37:268–274

    Article  CAS  Google Scholar 

  • Ahuja P, Gupta R, Saxena RK (1999) Sorption and desorption of cobalt by Oscillatoria anguistissima. Curr Microbiol 39:49–52

    Article  CAS  Google Scholar 

  • Ashkenazy R, Gottlib L, Yannai S (1997) Characterization of acetone-washed yeast biomass functional groups involved in lead biosorption. Biotechnol Bioeng 55:1–10

    Article  CAS  Google Scholar 

  • Avery SV, Tobin JM (1992) Mechanism of strontium uptake by laboratory and brewing strains of Saccharomyces cerevisiae. Appl Environ Microbiol 58:3883–3889

    CAS  Google Scholar 

  • Avery SV, Tobin JM (1993) Mechanism of adsorption of hard and soft metal-ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl Environ Microbiol 59:2851–2856

    CAS  Google Scholar 

  • Aydin F, Yavuz O, Ziyadanogullari B, Ziyadanogullari R (1998) Recovery of copper, cobalt, nickel, cadmium, zinc and bismuth from electrolytic copper solution. Turk J Chem 22:149–154

    CAS  Google Scholar 

  • Bingol A, Ucun H, Bayhan YK, Karagunduz A, Cakici A, Keskinler B (2004) Removal of chromate anions from aqueous stream by a cationic surfactant-modified yeast. Biores Technol 94:245–249

    Article  CAS  Google Scholar 

  • Bishnoi NR, Garima (2005) Fungus—an alternative for bioremediation of heavy metal containing wastewater: a review. J Sci Ind Res 64:93–100

    CAS  Google Scholar 

  • Blackwell KJ, Singleton I, Tobin JM (1995) Metal cation uptake by yeast: a review. Appl Microbiol Biotechnol 43:579–584

    Article  CAS  Google Scholar 

  • Brady D, Duncan JR (1994) Bioaccumulation of metal-cations by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 41:149–154

    Article  CAS  Google Scholar 

  • Brady D, Stoll A, Duncan JR (1994a) Biosorption of heavy metal cations by non-viable yeast biomass. Environ Technol 15:429–438

    Article  CAS  Google Scholar 

  • Brady D, Stoll A, Duncan JR (1994b) Chemical and enzymatic extraction of heavy metal binding polymers from isolated cell walls of Saccharomyces cerevisiae. Biotechnol Bioeng 44:297–302

    Article  CAS  Google Scholar 

  • Bustard M, McHale AP (1998) Biosorption of heavy metals by distillery-derived biomass. Bioprocess Eng 19:351–353

    Article  CAS  Google Scholar 

  • Cabib E, Roh D, Schmidt M, Crotti LB, Varma A (2001) The yeast cell wall and septum as paradigms of cell growth and morphogenesis. J Biol Chem 276:19679–19682

    Article  CAS  Google Scholar 

  • Cassidy MB, Lee H, Trevors JT (1996) Environmental applications of immobilized microbial cells: a review. J Ind Microbiol 16:79–101

    Article  CAS  Google Scholar 

  • Chen C, Wang JL (2008) Removal of Pb2+, Ag+, Cs+ and Sr2+ from aqueous solution by brewery’s waste biomass. J Hazard Mater 151:65–70

    Article  CAS  Google Scholar 

  • Cojocaru C, Diaconu M, Cretescu I, Savic J, Vasic V (2009) Biosorption of copper(II) ions from aqua solutions using dried yeast biomass. Colloid Surf A-Physicochem Eng Asp 335:181–188

    Article  CAS  Google Scholar 

  • Cui LZ, Wu GP, Jeong TS (2010) Adsorption performance of nickel and cadmium ions onto brewer’s yeast. Can J Chem Eng 88:109–115

    Article  CAS  Google Scholar 

  • De Groot PWJ, Ram AF, Klis FM (2005) Features and functions of covalently linked proteins in fungal cell walls. Fungal Genet Biol 42:657–675

    Article  CAS  Google Scholar 

  • de Vargas I, Macaskie LE, Guibal E (2004) Biosorption of palladium and platinum by sulfate-reducing bacteria. J Chem Technol Biotechnol 79:49–56

    Article  CAS  Google Scholar 

  • Dewulf J, Van der Vorst G, Denturck K, Van Langenhove H, Ghyoot W, Tytgat J, Vandeputte K (2011) Recycling rechargeable lithium ion batteries: critical analysis of natural resource savings. Resour Conserv Recycl 54:229–234

    Article  Google Scholar 

  • Diniz V, Volesky B (2005) Biosorption of La, Eu and Yb using Sargassum biomass. Water Res 39:239–247

    Article  CAS  Google Scholar 

  • Dostalek P, Patzak M, Matejka P (2004) Influence of specific growth limitation on biosorption of heavy metals by Saccharomyces cerevisiae. Int Biodeterior Biodegrad 54:203–207

    Article  CAS  Google Scholar 

  • Doulakas L, Novy K, Stucki S, Comninellis C (2000) Recovery of Cu, Pb, Cd and Zn from synthetic mixture by selective electrodeposition in chloride solution. Electrochim Acta 46:349–356

    Article  CAS  Google Scholar 

  • Engl A, Kunz B (1995) Biosorption of heavy metals by Saccharomyces cerevisiae: effects of nutrient vonditions. J Chem Technol Biotechnol 63:257–261

    Article  CAS  Google Scholar 

  • Ferraz AI, Tavares T, Teixeira JA (2004) Cr(III) removal and recovery from Saccharomyces cerevisiae. Chem Eng J 105:11–20

    Article  CAS  Google Scholar 

  • Ferraz AI, Teixeira JA (1999) The use of flocculating brewer´s yeast for Cr(III) and Pb(II) removal from residual wastewaters. Bioprocess Eng 21:431–437

    Article  CAS  Google Scholar 

  • Ferreira I, Pinho O, Vieira E, Tavarela JG (2010) Brewer's Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci Technol 21:77–84

    Article  CAS  Google Scholar 

  • Florence TM (1983) Trace-element speciation and aquatic toxicology. Trac-Trends Anal Chem 2:162–166

    Article  CAS  Google Scholar 

  • Fukuta T, Ito T, Sawada K, Kojima Y, Matsuda H, Seto F (2004) Separation of Cu, Zn and Ni from plating solution by precipitation of metal sulfides. Kag Kog Ronbunshu 30:227–232

    Article  Google Scholar 

  • Gadd GM (1990) Fungi and yeast for metal accumulation. In: Ehrlich HL, Brierly CL (eds) Microbial mineral recovery. McGraw-Hill, New York, pp 249–275

    Google Scholar 

  • Gadd GM (2009) Heavy metal pollutants: environmental and biotechnological aspects. In: Schaechter M (ed) Encyclopedia of microbiology, vol 1. Elsevier, Oxford, pp 321–334

    Chapter  Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    Article  CAS  Google Scholar 

  • Gadd GM, Sayer JA (2000) Influence of fungi on the environmental mobility of metals and metalloids. In: Lovley DR (ed) Environmental micro-metal interactions. ASM Press, Washington, pp 237–256

    Google Scholar 

  • Gavrilescu M (2004) Removal of heavy metals from the environment by biosorption. Eng Life Sci 4:219–232

    Article  CAS  Google Scholar 

  • Ghorbani F, Younesi H, Ghasempouri SM, Zinatizadeh AA, Amini M, Daneshi A (2008) Application of response surface methodology for optimization of cadmium biosorption in an aqueous solution by Saccharomyces cerevisiae. Chem Eng J 145:267–275

    Article  CAS  Google Scholar 

  • Goffeau A, Barrell BG, Bussey H, Davis RW, Dujon B, Feldmann H, Galibert F, Hoheisel JD, Jacq C, Johnston M, Louis EJ, Mewes HW, Murakami Y, Philippsen P, Tettelin H, Oliver SG (1996) Life with 6000 genes. Science 274:546–567

    Article  CAS  Google Scholar 

  • Göksungur Y, Üren S, Güvenç U (2005) Biosorption of cadmium and lead ions by ethanol treated waste baker’s yeast biomass. Biores Technol 96:103–109

    Article  CAS  Google Scholar 

  • Gouveia C, Soares EV (2004) Pb2+ inhibits competitively flocculation of Saccharomyces cerevisiae. J Inst Brew 110:141–145

    CAS  Google Scholar 

  • Goyal N, Jain SC, Banerjee UC (2003) Comparative studies on the microbial adsorption of heavy metals. Adv Environ Res 7:311–319

    Article  CAS  Google Scholar 

  • Greene B, Hosea M, McPherson R, Henzl M, Alexander MD, Darnall DW (1986) Interaction of gold(I) and gold(III) complexes with algal biomass. Environ Sci Technol 20:627–632

    Article  CAS  Google Scholar 

  • Han RP, Li HK, Li YH, Zhang JH, Xiao HJ, Shi J (2006) Biosorption of copper and lead ions by waste beer yeast. J Hazard Mat 137:1569–1576

    Article  CAS  Google Scholar 

  • Herrero R, Lodeiro P, Rey-Castro C, Vilarino T, de Vicente MES (2005) Removal of inorganic mercury from aqueous solutions by biomass of the marine macroalga Cystoseira baccata. Water Res 39:3199–3210

    Article  CAS  Google Scholar 

  • Huige NJ (2006) Brewery by-products and effluents. In: Priest FG, Stewart GG (eds) Handbook of brewing. CRC Press, Boca Raton, pp 655–713

    Chapter  Google Scholar 

  • Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113

    Article  CAS  Google Scholar 

  • Junghans K, Straube G (1991) Biosorption of copper by yeasts. Biol Met 4:233–237

    Article  CAS  Google Scholar 

  • Kapoor A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresour Technol 53:195–206

    CAS  Google Scholar 

  • Klis FM (1994) Review: cell wall assembly in yeast. Yeast 10:851–869

    Article  CAS  Google Scholar 

  • Klis FM, Brul S, De Groot PWJ (2010) Covalently linked wall proteins in ascomycetous fungi. Yeast 27:489–493

    Article  CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display-applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kordialik-Bogacka E (2011) Cadmium and lead recovery from yeast biomass. Cent Eur J Chem 9:320–325

    Article  CAS  Google Scholar 

  • Kotrba P, Ruml T (2010) Surface display of metal fixation motifs of bacterial P1-Type ATPases specifically promotes biosorption of Pb2+ by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622

    Article  CAS  Google Scholar 

  • Krauter P, Martinelli R, Williams K, Martins S (1996) Removal of Cr(VI) from ground water by Saccharomyces cerevisiae. Biodegradation 7:277–286

    Article  CAS  Google Scholar 

  • Kuchar D, Fukuta T, Kubota M, Matsuda H (2010) Recovery of Cu, Zn, Ni and Cr from plating sludge by combined sulfidation and oxidation treatment. Internatl J Civil Environ Eng 2:62–66

    Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the biosorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with the ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  Google Scholar 

  • Lu Y, Wilkins E (1996) Heavy metal by caustic-treated yeast immobilized in alginate. J Hazard Mat 49:165–179

    Article  CAS  Google Scholar 

  • Machado MD, Janssens S, Soares HMVM, Soares EV (2009) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: advantages of using dead biomass. J Appl Microbiol 106:1792–1804

    Article  CAS  Google Scholar 

  • Machado MD, Santos MSF, Gouveia C, Soares HMVM, Soares EV (2008) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: the flocculation as a separation process. Bioresour Technol 99:2107–2115

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2010a) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mat 180:347–353

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2010b) Removal of heavymetals using a brewer’s yeast strain of Saccharomyces cerevisiae: application to the treatment of real electroplating effluents containing multielements. J Chem Technol Biotechnol 85:1353–1360

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2010c) Selective recovery of copper, nickel and zinc from ashes produced from Saccharomyces cerevisiae contaminated biomass used in the treatment of real electroplating effluents. J Hazard Mat 184:357–363

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2011a) Impact of fluorides on the removal of heavy metals from an electroplating effluent using a flocculent brewer’s yeast strain of Saccharomyces cerevisiae. Chem Speciation Bioavail 23:237–242

    Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2011b) Selective recovery of chromium, copper, nickel, and zinc from an acid solution using an environmentally friendly process. Environ Sci Pollut Res 18:1279–1285

    Article  CAS  Google Scholar 

  • Machado MD, Soares HMVM, Soares EV (2010d) Removal of chromium, copper and nickel from an electroplating effluent using a flocculent brewer’s yeast strain of Saccharomyces cerevisiae. Water Air Soil Poll 212:199–204

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Mapolelo M, Torto N (2004) Trace enrichment of metal ions in aquatic environments by Saccharomyces cerevisiae. Talanta 64:39–47

    Article  CAS  Google Scholar 

  • Mapolelo M, Torto N, Prior B (2005) Evaluation of yeast strains as possible agents for trace enrichment of metal ions in aquatic environments. Talanta 65:930–937

    Article  CAS  Google Scholar 

  • Marques PA, Pinheiro HM, Teixeira JA, Rosa MF (1999) Removal efficiency of Cu2+, Cd2+ and Pb2+ by waste brewery biomass: pH and cation association effects. Desalination 124:137–144

    Article  CAS  Google Scholar 

  • Martell AE, Smith RM (2004) NIST Standard Reference Database 46 Version 8.0, NIST Critically Selected Stability Constants of Metal Complexes Database. US Department of Commerce, National Institute of Standards and Technology.

  • Matis KA, Zouboulis AI, Lazaridis NK, Hancock IC (2003) Sorptive flotation for metal ions recovery. Int J Miner Process 70:99–108

    Article  CAS  Google Scholar 

  • Mertz W (1993) Chromium in human nutrition—a review. J Nutr 123:626–633

    CAS  Google Scholar 

  • Naja GM, Murphy V, Volesky B (2010) Biosorption, metals. In: Flickinger M (ed) Encyclopedia of industrial biotechnology: bioprocess, bioseparation, and cell technology. Wiley, New York, pp 1–29

    Google Scholar 

  • Naja GM, Volesky B (2010) Treatment of metal-bearing effluents: removal and recovery. In: Wang LK, Chen JP, Hung YT, Shammas NK (eds) Handbook on heavy metals in the environment. Taylor & Francis, Boca Raton, pp 247–291

    Google Scholar 

  • Nishitani T, Shimada M, Kuroda K, Ueda M (2010) Molecular design of yeast cell surface for adsorption and recovery of molybdenum, one of rare metals. Appl Microbiol Biotechnol 86:641–648

    Article  CAS  Google Scholar 

  • Norris PR, Kelly DP (1977) Accumulation of cadmium and cobalt by Saccharomyces cerevisiae. J Gen Microbiol 99:317–324

    CAS  Google Scholar 

  • Özer A, Özer D (2003) Comparative study of the biosorption of Pb(II), Ni(II), and Cr(VI) ions onto S. cerevisiae: determination of biosorption heats. J Hazard Mat B 100:219–229

    Article  CAS  Google Scholar 

  • Padmavathy V (2008) Biosorption of nickel(II) ions by baker's yeast: kinetic, thermodynamic and desorption studies. Bioresour Technol 99:3100–3109

    Article  CAS  Google Scholar 

  • Parvathi K, Nagendran R (2007) Biosorption of chromium from effluent generated in chrome-electroplating unit using Saccharomyces cerevisiae. Sep Sci Technol 42:625–638

    Article  CAS  Google Scholar 

  • Parvathi K, Nagendran R, Nareshkumar R (2007) Lead biosorption onto waste beer yeast by-product, a means to decontaminate effluent generated from battery manufacturing industry. Electron J Biotechnol 10:92–105

    Article  CAS  Google Scholar 

  • Ramelow GJ, Fralick D, Zhao YF (1992) Factors affecting the uptake of aqueous metal-ions by dried seaweed biomass. Microbios 72:81–93

    CAS  Google Scholar 

  • Romera E, Gonzalez F, Ballester A, Blazquez ML, Munoz JA (2008) Biosorption of heavy metals by Fucus spiralis. Bioresour Technol 99:4684–4693

    Article  CAS  Google Scholar 

  • Ruta L, Paraschivescu C, Matache M, Avramescu S, Farcasanu IC (2010) Removing heavy metals from synthetic effluents using “kamikaze” Saccharomyces cerevisiae cells. Appl Microbiol Biotechnol 85:763–771

    Article  CAS  Google Scholar 

  • Salem M, Brim H, Hussain S, Arshad M, Leigh MB, Zia-ul-hassan (2008) Perspectives on microbial cell surface display in bioremediation. Biotechnol Adv 26:151–161

    Article  CAS  Google Scholar 

  • Schlesinger M (2004) Electroplating. In: Kirk–Othmer encyclopedia of chemical technology. Vol 9. Wiley, New York, pp 780–788

  • Shah D, Shen MWY, Chen W, Da Silva NA (2010) Enhanced arsenic accumulation in Saccharomyces cerevisiae overexpressing transporters Fps1p or Hxt7p. J Biotechnol 150:101–107

    Article  CAS  Google Scholar 

  • Sheng PX, Ting YP, Chen JP, Hong L (2004) Sorption of lead, copper, cadmium, zinc, and nickel by marine algal biomass: characterization of biosorptive capacity and investigation of mechanisms. J Colloid Interface Sci 275:131–141

    Article  CAS  Google Scholar 

  • Shibasaki S, Maeda H, Ueda M (2009) Molecular display technology using yeast-arming technology. Anal Sci 25:41–49

    Article  CAS  Google Scholar 

  • Simmons P, Tobin JM, Singleton I (1995) Considerations on the use of commercially available yeast biomass for the treatment of metal-containing effluents. J Indust Microbiol 14:240–246

    Article  CAS  Google Scholar 

  • Simon P, Singleton I (1996) A method to increase silver biosorption by an industrial strain of Saccharomyces cerevisiae. Appl Microbiol Biotechnol 45:278–285

    Article  Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99:333–340

    Article  CAS  Google Scholar 

  • Soares EV (2011) Flocculation in Saccharomyces cerevisiae: a review. J Appl Microbiol 110:1–18

    Article  CAS  Google Scholar 

  • Soares EV, De Coninck G, Duarte F, Soares HMVM (2002) Use of Saccharomyces cerevisiae for Cu2+ removal from solution: the advantages of using a flocculent strain. Biotechnol Lett 24:663–666

    Article  CAS  Google Scholar 

  • Soya K, Mihara N, Kuchar D, Kubota M, Matsuda H, Fukuta T (2010) Selective sulfidation of copper, zinc and nickel in plating wastewater using calcium sulfide. Internat J Civil Environ Eng 2:93–97

    Google Scholar 

  • Stoll A, Duncan JR (1996) Enhanced heavy metal removal from waste water by viable, glucose pretreated Saccharomyces cerevisiae cells. Biotechnol Lett 18:1209–1212

    Article  CAS  Google Scholar 

  • Stoll A, Duncan JR (1997) Implementation of a continuous-flow stirred bioreactor system in the bioremediation of heavy metals from industrial waste water. Environ Pollut 97:247–251

    Article  CAS  Google Scholar 

  • Strandberg GW, Shumate SE II, Parrot JR Jr (1981) Microbial cells as biosorbents for heavy metals: accumulation of uranium by Saccharomyces cerevisiae and Pseudomonas aeruginosa. Appl Environ Microbiol 41:237–245

    CAS  Google Scholar 

  • Suh JH, Kim DS (2000) Effects of Hg2+ and cell conditions on Pb2+ accumulation by Saccharomyces cerevisiae. Bioprocess Eng 23:327–329

    Article  CAS  Google Scholar 

  • Suh JH, Yun JW, Kim DS (1998) Comparison of Pb2+ accumulation characteristics between live and dead cells of Saccharomyces cerevisiae and Aureobasidium pullulans. Biotechnol Lett 20:247–251

    Article  CAS  Google Scholar 

  • Suzuki R, Li WH, Schwartz M, Nobe K (1995) Segmented porous-electrode flow reactors for the electrochemical treatment of commingled metal plating wastes. Plat Surf Finish 82:58–65

    CAS  Google Scholar 

  • Tabak HH, Scharp R, Burckle J, Kawahara FK, Govind R (2003) Advances in biotreatment of acid mine drainage and biorecovery of metals: 1. Metal precipitation for recovery and recycle. Biodegradation 14:423–436

    Article  CAS  Google Scholar 

  • Tobin JM, Cooper DG, Neufeld RJ (1987) Influence of anions on metal adsorption by Rhizopus arrhizus biomass. Biotechnol Bioeng 30:882–886

    Article  CAS  Google Scholar 

  • Tokuda H, Kuchar D, Mihara N, Kubota M, Matsuda H, Fukuta T (2008) Study on reaction kinetics and selective precipitation of Cu, Zn, Ni and Sn with H2S in single-metal and multi-metal systems. Chemosphere 73:1448–1452

    Article  CAS  Google Scholar 

  • Tsezos M (1990) Engineering aspects of metal binding by biomass. In: Ehrlich HL, Brierly CL (eds) Microbial mineral recovery, vol 14. McGraw-Hill, New York, pp 325–339

    Google Scholar 

  • US-EPA (1984) Guidance manual for electroplating and metal finishing pretreatment standards, EPA-440/1-84/091g. US Environmental Protection Agency, Washington, DC

  • Vasudevan P, Padmavathy V, Dhingra SC (2003) Kinetics of biosorption of cadmium on Baker’s yeast. Bioresour Technol 89:281–287

    Article  CAS  Google Scholar 

  • Vaughan-Martini A, Martini A (1998) Saccharomyces Meyen ex Reess. In: Kurtzman CP, Fell JW (eds) The yeasts: a taxonomic study. Elsevier, Amsterdam, pp 358–371

    Chapter  Google Scholar 

  • Veelders M, Bruckner S, Ott D, Unverzagt C, Mosch HU, Essen LO (2010) Structural basis of flocculin-mediated social behavior in yeast. Proc Natl Acad Sci USA 107:22511–22516

    Article  CAS  Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad 60:96–102

    Article  CAS  Google Scholar 

  • Volesky B (1990) Biosorption by fungal biomass. In: Volesky B (ed) Biosorption of heavy metals. CRC Press, Boca Raton, pp 139–171

    Google Scholar 

  • Volesky B (2003) Sorption and biosorption. BV Sorbex, Inc, Montreal

    Google Scholar 

  • Volesky B, May-Phillips HA (1995) Biosorption of heavy metals by Saccharomyces cerevisiae. Appl Microbiol Biotechnol 42:797–806

    Article  CAS  Google Scholar 

  • Wang J, Li Y (2006) Chemical reduction/oxidation. In: Wang LK, Pereira NC, Hung Y (eds) Advanced physicochemical treatment processes, handbook of environmental engineering. Vol 4. Humana Press, Totowa, p 485

    Chapter  Google Scholar 

  • Wang JL (2002) Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae. Process Biochem 37:847–850

    Article  CAS  Google Scholar 

  • Wang JL, Chen C (2009) Biosorbents for heavy metals removal and their future. Biotechnol Adv 27:195–226

    Article  CAS  Google Scholar 

  • Wilhelmi BS, Duncan JR (1995) Metal recovery from Saccharomyces cerevisiae biosorption columns. Biotechnol Lett 17:1007–1012

    Article  CAS  Google Scholar 

  • Wilhelmi BS, Duncan JR (1996) Reusability of immobilised Saccharomyces cerevisiae with successive copper adsorption–desorption cycles. Biotechnol Lett 18:531–536

    Article  CAS  Google Scholar 

  • Wu YH, Jiang L, Mi XM, Li B, Feng SX (2011) Equilibrium, kinetics and thermodynamics study on biosorption of Cr(VI) by fresh biomass of Saccharomyces cerevisiae. Korean J Chem Eng 28:895–901

    Article  CAS  Google Scholar 

  • Yu JX, Tong M, Sun XM, Li BH (2007) A simple method to prepare poly(amic acid)-modified biomass for enhancement of lead and cadmium adsorption. Biochem Eng J 33:126–133

    Article  CAS  Google Scholar 

  • Yu JX, Tong M, Sun XM, Li BH (2008) Enhanced and selective adsorption of Pb2+ and Cu2+ by EDTAD-modified biomass of baker’s yeast. Bioresour Technol 99:2588–2593

    Article  CAS  Google Scholar 

  • Zamboulis D, Peleka EN, Lazaridis NK, Matis KA (2011) Metal ion separation and recovery from environmental sources using various flotation and sorption techniques. J Chem Technol Biotechnol 86:335–344

    Article  CAS  Google Scholar 

  • Zhao M, Duncan JR (1997) Use of formaldehyde cross-linked Saccharomyces cerevisiae in column bioreactors for removal of metals from aqueous solutions. Biotechnol Lett 19:953–955

    Article  CAS  Google Scholar 

  • Zhao M, Duncan JR (1998) Column sorption of Cr(VI) from electroplating effluent using formaldehyde cross-linked Saccharomyces cerevisiae. Biotechnol Lett 20:603–606

    Article  CAS  Google Scholar 

  • Zouboulis AI, Matis KA, Lazaridis NK (2001) Removal of metal ions from simulated wastewater by Saccharomyces yeast biomass: combining biosorption and flotation processes. Sep Sci Technol 36:349–365

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank to the Fundação para a Ciência e a Tecnologia (FCT) from Portuguese Government for the financial support of this work with FEDER founds, by the Project POCTI/CTA/47875/2002 and through the grants PEST-OE/EQB/LA0023/2011 (IBB) and PEST-C/EQB/LA0006/2011 (REQUIMTE).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo V. Soares.

Additional information

Responsible editor: Elena Maestri

Rights and permissions

Reprints and permissions

About this article

Cite this article

Soares, E.V., Soares, H.M.V.M. Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res 19, 1066–1083 (2012). https://doi.org/10.1007/s11356-011-0671-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-011-0671-5

Keywords

Navigation