Skip to main content
Log in

Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion

  • Applied Genetics and Molecular Biotechnology
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

To increase the level of adsorption of heavy metal ions in surface-engineered yeasts, a yeast metallothionein (YMT) was tandemly fused and displayed by means of an α-agglutinin-based display system. The display of the YMT and its tandem repeats was examined by immunofluorescent labeling. The adsorption and recovery of Cd2+ on the cell surface was increasingly enhanced with increasing number of tandem repeats. All Cd2+-binding sites in the YMT tandem repeats were suggested to be completely occupied. To investigate the relationship between cell-surface adsorption and protection against heavy metal ion toxicity, the tolerance of these surface-engineered yeasts to Cd2+ was examined by growing in Cd2+-containing liquid medium. The rate of growth was found to be dependent on the number of displayed tandem repeats of YMT. These results suggest that the characteristics of surface-engineered yeasts as a bioadsorbent were dependent on the ability of the displayed proteins to bind metal ions, and the adsorption of heavy metal ions on the cell surface plays a major role in the ability of the cells to resist the toxic effects of metal ions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    Article  CAS  Google Scholar 

  • Cobbett CS (2000) Phytochelatins and their roles in heavy metal detoxification. Plant Physiol 123:825–832

    Article  CAS  Google Scholar 

  • Gadd GM, White C (1993) Microbial treatment of metal pollution—a working biotechnology? Trends Biotechnol 11:353–359

    Article  CAS  Google Scholar 

  • Georgiou G, Poetschke HL, Stathopoulos C, Francisco JA (1993) Practical applications of engineering gram-negative bacterial cell surfaces. Trends Biotechnol 11:6–10

    Article  CAS  Google Scholar 

  • Hopp TP, Prickett KS, Price VL, Libby RT, March CJ, Cerretti DP, Urdal DL, Colon PJ (1988) A short polypeptide marker sequence useful for recombinant protein identification and purification. BioTechnology 6:1204–1210

    Article  CAS  Google Scholar 

  • Ito H, Fukuda Y, Murata K, Kimura A (1983) Transformation of intact yeast cells treated with alkali cations. J Bacteriol 153:163–168

    Article  CAS  Google Scholar 

  • Kanai T, Atomi H, Umemura K, Ueno H, Teranishi Y, Ueda M, Tanaka A (1996) A novel heterologous gene expression system in Saccharomyces cerevisiae using the isocitrate lyase gene promoter from Candida tropicalis. Appl Microbiol Biotechnol 44:759–765

    CAS  PubMed  Google Scholar 

  • Kapoor, A, Viraraghavan T (1995) Fungal biosorption—an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology 53:195–206

    CAS  Google Scholar 

  • Klis FM, Mol P, Hellingwerf K, Brul S (2002) Dynamics of cell wall structure in Saccharomyces cerevisiae. FEMS Microbiol Rev 26:239–256

    Article  CAS  Google Scholar 

  • Kondo A, Ueda M (2004) Yeast cell-surface display—applications of molecular display. Appl Microbiol Biotechnol 64:28–40

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M, Shibasaki S, Tanaka A (2002) Cell surface-engineered yeast with ability to bind, and self-aggregate in response to, copper ion. Appl Microbiol Biotechnol 59:259–264

    Article  CAS  Google Scholar 

  • Lipke PN, Kurjan J (1992) Sexual agglutination in budding yeasts: structure, function, and regulation of adhesion glycoproteins. Microbiol Rev 56:180–194

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marques AM, Roca X, Dolores Simon-Pujol M, Carmen Fuste M, Congregado F (1991) Uranium accumulation by Pseudomonas sp. EPS-5028. Appl Microbiol Biotechnol 35:406–410

    Article  CAS  Google Scholar 

  • Mowll JL, Gadd GM (1984) Cadmium uptake by Aureobasidium pullulans. J Gen Microbiol 130:279–284

    CAS  Google Scholar 

  • Murai T, Ueda M, Atomi H, Shibasaki Y, Kamasawa N, Osumi M, Amachi T, Tanaka A (1997) Construction of a starch-utilizing yeast by cell surface engineering. Appl Environ Microbiol 63:1362–1366

    Article  CAS  Google Scholar 

  • Pazirandeh M, Chrisey LA, Mauro JM, Campbell JR, Gaber BP (1995) Expression of the Neurospora crassa metallothionein gene in Escherichia coli and its effect on heavy-metal uptake. Appl Microbiol Biotechnol 43:1112–1117

    Article  CAS  Google Scholar 

  • Perego P, Howell SB (1997) Molecular mechanisms controlling sensitivity to toxic metal ions in yeast. Toxicol Appl Pharmacol 147:312–318

    Article  CAS  Google Scholar 

  • Rome LD, Gadd GM (1987) Measurement of copper uptake in Saccharomyces cerevisiae using a Cu2+-selective electrode. FEMS Microbiol Lett 43:283–287

    Article  Google Scholar 

  • Romeyer FM (1988) Bioaccumulation of heavy metals in Escherichia coli expressing an inducible synthetic human metallothionein gene. J Bacteriol 8:207–220

    CAS  Google Scholar 

  • Schreuder MP, Brekelmans S, van den Ende H, Klis FM (1993) Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9:399–409

    Article  CAS  Google Scholar 

  • Shibasaki S, Ueda M, Iizuka T, Hirayama M, Ikeda Y, Kamasawa N, Osumi M, Tanaka A (2001) Quantitative evaluation of the enhanced green fluorescent protein displayed on the cell surface of Saccharomyces cerevisiae by fluorometric and confocal laser scanning microscopic analyses. Appl Microbiol Biotechnol 55:471–475

    Article  CAS  Google Scholar 

  • Tajima M, Nogi Y, Fukasawa T (1985) Primary structure of the Saccharomyces cerevisiae GAL7 gene. Yeast 1:67–77

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A (2000a) Cell surface engineering of yeast: construction of arming yeast with biocatalyst. J Biosci Bioeng 90:125–136

    Article  CAS  Google Scholar 

  • Ueda M, Tanaka A (2000b) Genetic immobilization of proteins on the yeast cell surface. Biotechnol Adv 18:121–140

    Article  CAS  Google Scholar 

  • Walker SG, Flemming CA, Ferris FG, Beveridge TJ, Bailey GW (1989) Physicochemical interaction of Escherichia coli cell envelopes and Bacillus subtilis cell walls with two clays and ability of the composite to immobilize heavy metals from solution. Appl Environ Microbiol 55:2976–2984

    Article  CAS  Google Scholar 

  • White C, Gadd GM (1987) The uptake and cellular distribution of zinc in Saccharomyces cerevisiae. J Gen Microbiol 133:727–737

    CAS  Google Scholar 

  • Winge DR, Nielson KB, Gray WR, Hamer DH (1985) Yeast metallothionein. Sequence and metal-binding properties. J Biol Chem 260:14464–14470

    CAS  PubMed  Google Scholar 

  • Wright CF, McKenney K, Hamer DH, Byrd J, Winge DR (1987) Structural and functional studies of the amino terminus of yeast metallothionein. J Biol Chem 262:12912–12919

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Professor Tadashi Kokubo of Kyoto University for his permission to use the inductively coupled plasma-atomic emission spectroscope in his laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mitsuyoshi Ueda.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kuroda, K., Ueda, M. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl Microbiol Biotechnol 70, 458–463 (2006). https://doi.org/10.1007/s00253-005-0093-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-005-0093-8

Keywords

Navigation