Skip to main content

Advertisement

Log in

Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Environmental pollution with heavy metals is a very serious ecological problem, which can be solved by bioremediation of metal ions by microorganisms. Yeast cells, especially Saccharomyces cerevisiae, are known to exhibit a good natural ability to remove heavy metal ions from an aqueous phase. In the present work, an attempt was made to increase the copper-binding properties of S. cerevisiae. For this purpose, new strains of S. cerevisiae were produced by construction and integration of recombinant human MT2 and GFP-hMT2 genes into yeast cells. The ySA4001 strain expressed GFP-hMT2p under the constitutive pADH1 promoter and the ySA4002 and ySA4003 strains expressed hMT2 and GFP-hMT2 under the inducible pCUP1 promoter. An additional yMNWTA01 strain was obtained by adaptation of the BY4743 wild type S. cerevisiae strain to high copper concentrations. The yMNWTA01, ySA4002, and ySA4003 strains exhibited an enhanced ability for copper ion bioremediation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adamis PDB, Panek AD, Leite SGF, Eleutherio ECA (2003) Factors involved with cadmium absorption by a wild-type strain of Saccharomyces cerevisiae. Braz J Microbiol 34:55–60

    Article  CAS  Google Scholar 

  • Araújo CST, Carvalho DC, Rezende HC, Almeida ILS, Coelho LM, Coelho NMM, Marques TL, Alves VN (2013) Bioremediation of waters contaminated with heavy metals using Moringa oleifera seeds as biosorbent. In: Patil YB, Rao P (eds) Applied bioremediation - active and passive approaches. InTech Open Access Publisher, Rijeka, Croatia, pp 227–255

    Google Scholar 

  • Aronov S, Gelin-Licht R, Zipor G, Haim L, Safran E, Gerst JE (2007) mRNAs encoding polarity and exocytosis factors are cotransported with the cortical endoplasmic reticulum to the incipient bud in Saccharomyces cerevisiae. Mol Cell Biol 27:3441–3455

    Article  CAS  Google Scholar 

  • Artells E, Palacios Ò, Capdevila M, Atrian S (2013) Mammalian MT1 and MT2 metallothioneins differ in their metal binding abilities. Metallomics 5:1397–1410

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  Google Scholar 

  • Butt TR, Ecker DJ (1987) Yeast metallothionein and applications in biotechnology. Microbiol Rev 51:351–364

    CAS  Google Scholar 

  • Carpenè E, Andreani G, Isani G (2007) Metallothionein functions and structural characteristics. J Trace Elem Med Biol 21(Suppl 1):35–39

    Article  Google Scholar 

  • Chen S-H, Chen L, Russell DH (2014) Metal-induced conformational changes of human metallothionein-2A: a combined theoretical and experimental study of metal-free and partially metalated intermediates. J Am Chem Soc 136:9499–9508

    Article  CAS  Google Scholar 

  • Cherian MG, Jayasurya A, Bay B-H (2003) Metallothioneins in human tumors and potential roles in carcinogenesis. Mutat Res 533:201–209

    Article  CAS  Google Scholar 

  • Chung RS, Howells C, Eaton ED, Shabala L, Zovo K, Palumaa P, Sillard R, Woodhouse A, Bennett WR, Ray S, Vickers JC, West AK (2010) The Native copper- and zinc-binding protein metallothionein blocks copper-mediated Aβ aggregation and toxicity in rat cortical neurons. PLoS One 5:e12030:11

    Google Scholar 

  • Denisenko O, Bomsztyk K (2002) Yeast hnRNP K-like genes are involved in regulation of the telomeric position effect and telomere length. Mol Cell Biol 22:286–297

    Article  CAS  Google Scholar 

  • Dönmez G, Aksu Z (1999) The effect of copper(II) ions on the growth and bioaccumulation properties of some yeasts. Process Biochem 35:135–142

    Article  Google Scholar 

  • Duncan MC, Costaguta G, Payne GS (2003) Yeast epsin-related proteins required for Golgi-endosome traffic define a gamma-adaptin ear-binding motif. Nat Cell Biol 5:77–81

    Article  CAS  Google Scholar 

  • Ezaki B, Nakakihara E (2012) Possible involvement of GDI1 protein, a GDP dissociation inhibitor related to vesicle transport, in an amelioration of zinc toxicity in Saccharomyces cerevisiae. Yeast 29:17–24

    Article  CAS  Google Scholar 

  • Flagfeldt DB, Siewers V, Huang L, Nielsen J (2009) Characterization of chromosomal integration sites for heterologous gene expression in Saccharomyces cerevisiae. Yeast 26:545–551

    Article  Google Scholar 

  • Garbisu C, Alkorta I (2003) Basic concepts on heavy metal soil bioremediation. Eur J Miner Process Environ Prot 3:58–66

    Google Scholar 

  • Ghaemmaghami S, Huh W-K, Bower K, Howson RW, Belle A, Dephoure N, O’Shea EK, Weissman JS (2003) Global analysis of protein expression in yeast. Nature 425:737–741

    Article  CAS  Google Scholar 

  • Gietz RD, Schiest RH (2007) High-efficiency yeast transformation using the LiAc/SS carrier DNA/PEG method. Nat Protoc 2:31–34

    Article  CAS  Google Scholar 

  • Gimble FS, Stephens BW (1995) Substitutions in conserved dodecapeptide motifs that uncouple the DNA binding and DNA cleavage activities of PI-SceI endonuclease. J Biol Chem 270:5849–5856

    Article  CAS  Google Scholar 

  • Hlihor RM, Diaconu M, Fertu D, Chelaru C, Sandu I, Tavares T, Gavrilescu M (2013) Bioremediation of Cr(VI) polluted wastewaters by sorption on heat inactivated Saccharomyces cerevisiae biomass. Int J Environ Res 7:581–594

    Google Scholar 

  • Jensen LT, Howard WR, Strain JJ, Winge DR, Cizewski Culotta V (1996) Enhanced effectiveness of copper ion buffering by CUP1 metallothionein compared with CRS5 Metallothionein in Saccharomyces cerevisiae. J Biol Chem 271:18514–18519

    Article  CAS  Google Scholar 

  • Kordialik-Bogacka E, Diowksz A (2014) Metal uptake capacity of modified Saccharomyces pastorianus biomass from different types of solution. Environ Sci Pollut Res 21:2223–2229

    Article  CAS  Google Scholar 

  • Kotrba P, Ruml T (2010) Surface display of metal fixation motifs of bacterial P1-Type ATPases specifically promotes biosorption of Pb2+ by Saccharomyces cerevisiae. Appl Environ Microbiol 76:2615–2622

    Article  CAS  Google Scholar 

  • Ksheminska H, Jaglarz A, Fedorovych D, Babyak L, Yanovych D, Kaszycki P, Koloczek H (2003) Bioremediation of chromium by the yeast Pichia guilliermondii: toxicity and accumulation of Cr (III) and Cr (VI) and the influence of riboflavin on Cr tolerance. Microbiol Res 158:59–67

    Article  CAS  Google Scholar 

  • Ksheminska HP, Honchar TM, Gayda GZ, Gonchar MV (2006) Extra-cellular chromate-reducing activity of the yeast cultures. Cent Eur J Biol 1:137–149

    CAS  Google Scholar 

  • Ksheminska H, Honchar T, Usatenko Y, Gayda G, Gonchar M (2010) The chromate resistance phenotype of some yeast mutants correlates with a lower level of Cr(V) species generated in the extra-cellular medium. Biometals 23:633–642

    Article  CAS  Google Scholar 

  • Ksheminska HP, Gayda GZ, Ivash MF, Gonchar MV (2011) Chromate-resistant mutants of the yeast Pichia guilliermondii: selection and properties. Microbiology 80:314–325

    Article  CAS  Google Scholar 

  • Kulshreshtha A, Agrawal R, Barar M, Saxena S (2014) A Review on bioremediation of heavy metals in contaminated water. IOSR-JESTFT 8:44–50

    Article  Google Scholar 

  • Kuroda K, Ueda M (2003) Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl Microbiol Biotechnol 63:182–186

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2006) Effective display of metallothionein tandem repeats on the biosorption of cadmium ion. Appl Microbiol Biotechnol 70:458–463

    Article  CAS  Google Scholar 

  • Kuroda K, Ueda M (2010) Engineering of microorganisms towards recovery of rare metal ions. Appl Microbiol Biotechnol 87:53–60

    Article  CAS  Google Scholar 

  • Kuroda K, Shibasaki S, Ueda M, Tanaka A (2001) Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl Microbiol Biotechnol 57:697–701

    Article  CAS  Google Scholar 

  • Machado MD, Soares EV, Soares HMVM (2010) Removal of heavy metals using a brewer’s yeast strain of Saccharomyces cerevisiae: Chemical speciation as a tool in the prediction and improving of treatment efficiency of real electroplating effluents. J Hazard Mater 180:347–353

    Article  CAS  Google Scholar 

  • Malik A (2004) Metal bioremediation through growing cells. Environ Int 30:261–278

    Article  CAS  Google Scholar 

  • Maruthamuthu MK, Nadarajan SP, Ganesh I, Ravikumar S, Yun H, Yoo I-K, Hong SH (2015) Construction of a high efficiency copper adsorption bacterial system via peptide display and its application on copper dye polluted wastewater. Bioprocess Biosyst Eng 38:2077–2084

    Article  CAS  Google Scholar 

  • Mascorro-Gallardo JO, Covarrubias AA, Gaxiola R (1996) Construction of a CUP1 promoter-based vector to modulate gene expression in Saccharomyces cerevisiae. Gene 172:169–170

    Article  CAS  Google Scholar 

  • Mehra RK, Winge DR (1991) Metal ion resistance in fungi-molecular mechanisms and their regulated expression. J Cell Biochem 45:30–40

    Article  CAS  Google Scholar 

  • Murphy RJ, Levy JF (1983) Production of copper oxalate by some copper tolerant fungi. Trans British Mycol Soc 81:165–168

    Article  CAS  Google Scholar 

  • Nisnevitch M, Sigawi S, Cahan R, Nitzan Y (2010) Isolation, characterization and biological role of camelysin from Bacillus thuringiensis subsp. israelensis. Curr Microbiol 61:176–183

    Article  CAS  Google Scholar 

  • Ono B, Moriga N, Ishihara K, Ishiguro J, Ishino Y, Shinoda S (1984) Omnipotent suppressors effective in psi strains of Saccharomyces cerevisiae: recessiveness and dominance. Genetics 107:219–230

    CAS  Google Scholar 

  • Peng B, Williams TC, Henry M, Nielsen LK, Vickers CE (2015) Controlling heterologous gene expression in yeast cell factories on different carbon substrates and across the diauxic shift: a comparison of yeast promoter activities. Microb Cell Fact 14(91):11

    Google Scholar 

  • Perpetuo EA, Souza CB, Nascimento CAO (2011) Engineering bacteria for bioremediation. In: Carpi A (ed) Progress in molecular and environmental bioengineering—from analysis and modeling to technology applications. InTech Open Access Publisher, Rijeka, Croatia, pp 605–632

    Google Scholar 

  • Romeyer FM, Jacobs FA, Masson L, Hanna Z, Brousseau R (1988) Bioaccumulation of heavy metals in Escherichia coli expressing an inducible synthetic human metallothionein gene. J Biotechnol 8:207–220

    Article  CAS  Google Scholar 

  • Ruta LL, Popa VC, Nicolau I, Danet AF, Iordache V, Neagoe AD, Farcasanu IC (2014) Calcium signaling mediates the response to cadmium toxicity in Saccharomyces cerevisiae cells. FEBS Lett 588:3202–3212

    Article  CAS  Google Scholar 

  • Ruta LL, Popa CV, Nicolau I, Farcasanu IC (2016) Calcium signaling and copper toxicity in Saccharomyces cerevisiae cells. Environ Sci Pollut Res, DOI 10.1007/s11356-016-6666-5 1-13

  • Ruttkay-Nedecky B, Nejdl L, Gumulec J, Zitka O, Masarik M, Eckschlager T, Stiborova M, Adam V, Kizek R (2013) The role of metallothionein in oxidative stress. Int J Mol Sci 14:6044–6066

    Article  CAS  Google Scholar 

  • Sakulsak N (2012) Metallothionein: an overview on its metal homeostatic regulation in mammals. Int J Morphol 30:1007–1012

    Article  Google Scholar 

  • Sewer Use Program (2011) Regulations for wastewater discharge limits for sewer wastewater (Ottawa, Canada). URL https://www.nchca.ca/resources/content/Sewer_Use_program_-_english_-_01_May_2011.pdf. Accessed 24 March 2016

  • Sewerage and Drainage Act (1999) Requirements for discharge of trade effluent into the public sewers. http://www.pub.gov.sg/general/usedwater/Documents/requirements_UW.pdf. Accessed 24 March 2016

  • Shazia I, Uzma AS, Sadia GR, Talat A (2013) Bioremediation of heavy metals using isolates of filamentous fungus Aspergillus fumigatus collected from polluted soil of Kasur, Pakistan. Int Res J Biological Sci 2:66–73

    Google Scholar 

  • Sigawi S, Nisnevitch M, Zakalska O, Zakalsky A, Gayda G, Nitzan Y, Gonchar M (2014) Bioconversion of airborne methylamine by immobilized methylamine oxidase from recombinant Hansenula polymorpha. Sci World J 2014, Article ID 898323:9

  • Simpkins CO (2000) Metallothionein in human disease. Cell Mol Biol (Noisy-le-Grand) 46:465–488

    CAS  Google Scholar 

  • Singh S, Lee W, DaSilva NA, Mulchandani A, Chen W (2008) Enhanced arsenic accumulation by engineered yeast cells expressing Arabidopsis thaliana phytochelatin synthase. Biotechnol Bioeng 99:333–340

    Article  CAS  Google Scholar 

  • Site of Gene ID (2015) Gene ID 4502, updated on 20 March 2016 http://www.ncbi.nlm.nih.gov/gene/4502. Accessed 24 March 2016

  • Site of InterPro (2015) Site of the European Bioinformatics Institute, EMBL-EBI 2015 .http://www.ebi.ac.uk/interpro/entry/IPR012134. Accessed 24 March 2016

  • Site of SGD (2015) Saccharomyces Genome Database, Stanford University. http://www.yeastgenome.org/locus/S000003387/protein. Accessed 24 March 2016

  • Site of UniProtKB (2015) http://www.uniprot.org/blast/. Accessed 24 March 2016

  • Slobodin B, Gerst JE (2010) A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA 16:2277–2290

    Article  CAS  Google Scholar 

  • Smith MC, Sumner ER, Avery SV (2007) Gluthatione and Gts1p drive beneficial variability in the cadmium resistances of individual yeast cells. Mol Microbiol 66:699–712

    Article  CAS  Google Scholar 

  • Soares EV, Soares HMVM (2012) Bioremediation of industrial effluents containing heavy metals using brewing cells of Saccharomyces cerevisiae as a green technology: a review. Environ Sci Pollut Res Int 19:1066–1083

    Article  Google Scholar 

  • Soares EV, Soares HMVM (2013) Cleanup of industrial effluents containing heavy metals: a new opportunity of valorising the biomass produced by brewing industry. Appl Microbiol Biotechnol 97:6667–6675

    Article  CAS  Google Scholar 

  • Starska K, Bryś M, Forma E, Olszewski J, Pietkiewicz P, Lewy-Trenda I, Danilewicz M, Krześlak A (2015) The effect of metallothionein 2A core promoter region single-nucleotide polymorphism on accumulation of toxic metals in sinonasal inverted papilloma tissues. Toxicol Appl Pharmacol 285:187–197

    Article  CAS  Google Scholar 

  • Thirumoorthy N, Kumar KTM, Sundar AS, Panayappan L, Chatterjee M (2007) Metallothionein: an overview. World J Gastroenterol 13:993–996

    Article  CAS  Google Scholar 

  • Thirumoorthy N, Sunder AS, Kumar KTM, Kumar MS, Ganesh GNK, Chatterjee M (2011) A review of metallothionein isoforms and their role in pathophysiology. World J Surg Oncol 9(54):7

    Google Scholar 

  • Tornow J, Santungelo GM (1990) Efficient expression of the Saccharomyces cerevisiae glycolytic gene ADH1 is dependent upon a cis-acting regulatory element (UAS RPG) found initially in genes encoding ribosomal proteins. Gene 90:79–85

    Article  CAS  Google Scholar 

  • Tsezos M (2001) Biosorption of metals. The experience accumulated and outlook for technology development. Hydrometallurgy 59:241–243

    Article  CAS  Google Scholar 

  • US EPA (2013) Water Regulations. Basic information about regulated drinking water contaminants. Basic information about copper in drinking water. The U.S. Environmental Protection Agency. [WWW document]. URL http://water.epa.gov/drink/contaminants/basicinformation/copper.cfm. Accessed 24 March 2016

  • Valls M, Atrian S, de Lorenzo V, Fernández LA (2000) Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat Biotechnol 18:661–665

    Article  CAS  Google Scholar 

  • Vasudevan P, Padmavathy V, Dhingra SC (2002) Biosorption of monovalent and divalent ions on baker’s yeast. Bioresour Technol 82:285–289

    Article  CAS  Google Scholar 

  • Vinopal S, Ruml T, Kotrba P (2007) Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int Biodeterior Biodegrad 60:96–102

    Article  CAS  Google Scholar 

  • Wang J, Chen C (2006) Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol Adv 24:427–451

    Article  CAS  Google Scholar 

  • Wu MT, Demple B, Bennett RA, Christiani DC, Fan R, Hu H (2000) Individual variability in the zinc inducibility of metallothionein-IIA mRNA in human lymphocytes. J Toxicol Environ Health A 61:553–567

    Article  CAS  Google Scholar 

  • Xie XX, Ma YF, Wang QS, Chen ZL, Liao RR, Pan YC (2015) Yeast CUP1 protects HeLa cells against copper-induced stress. Braz J Med Biol Res 48:616–621

    Article  CAS  Google Scholar 

  • Yang F, Zhou M, He Z, Liu X, Sun L, Sun Y, Chen Z (2007) High-yield expression in Escherichia coli of soluble human MT2A with native functions. Protein Expr Purif 53:186–194

    Article  CAS  Google Scholar 

  • Yang X-Y, Sun J-H, Ke H-Y, Chen Y-J, Xu M, Luo G-H (2014) Metallothionein 2A genetic polymorphism and its correlation to coronary heart disease. Eur Rev Med Pharmacol Sci 18:3747–3753

    Google Scholar 

Download references

Acknowledgements

This research was supported by the Research Authority of the Ariel University, Israel, and by the Cherna Moskowitz Foundation, California, USA. We acknowledge the Smoler Proteomics Center at the Technion (Haifa, Israel) for the mass spectrometry proteomic analysis. We are very grateful to Prof. M. Gonchar for donation of the pYEX-4-AMO plasmid.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marina Nisnevitch.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Responsible editor: Robert Duran

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Geva, P., Kahta, R., Nakonechny, F. et al. Increased copper bioremediation ability of new transgenic and adapted Saccharomyces cerevisiae strains. Environ Sci Pollut Res 23, 19613–19625 (2016). https://doi.org/10.1007/s11356-016-7157-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-016-7157-4

Keywords

Navigation