Skip to main content
Log in

Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

This report describes a dynamic QTL analysis for plant height at various stages using a large doubled haploid population and performs a QTL comparison between different populations in Brassica napus.

Abstract

Plant height (PH) not only plays an important role in determining plant architecture, but is also an important character related to yield. The process of determining PH occurs through a series of steps; however, no studies have focused on developmental behavior factors affecting PH in Brassica napus. In the present study, KN DH, a large doubled haploid population containing 348 lines was used for a dynamic quantitative trait locus (QTL) analysis for PH in six experiments. In all, 20 QTLs were identified at maturity, whereas 50 QTLs were detected by conditional m apping method and the same number was identified by unconditional mapping strategies. Interestingly, five unconditional QTLs ucPH.A2-2, ucPH.A3-2, ucPH.C5-1, ucPH.C6-2 and ucPH.C6-3 were identified that were consistent over the all growth stages of one or two particular experiments, and one conditional QTL cPH.A2-3 was expressed throughout the entire growth process in one experiment. A total of 70 QTLs were obtained after combining QTLs identified at maturity, by conditional and unconditional mapping strategies, in which 25 showed opposite genetic effects in different periods/stages and experiments. A consensus map containing 1357 markers was constructed to compare QTLs identified in the KN population with five previously mapped populations. Alignment of the QTLs detected in different populations onto the consensus map showed that 27 were repeatedly detected in different genetic backgrounds. These findings will enhance our understanding of the genetic control of PH regulation in B. napus, and will be useful for rapeseed genetic manipulation through molecular marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Akaike H (1977) On entropy maximum principle. In: Krishnaiah PR (ed) Applications of statistics. North-Holland Publishing Company, Amsterdam, pp 27–41

    Google Scholar 

  • Arcade A, Labourdette A, Falque M, Mangin B, Chardon F, Charcosset A, Joets J (2004) BioMercator: integrating genetic maps and QTL towards discovery of candidate genes. Bioinformatics 20:2324–2326

    Article  CAS  PubMed  Google Scholar 

  • Basunanda P, Radoev M, Ecke W, Friedt W, Becker HC, Snowdon RJ (2010) Comparative mapping of quantitative trait loci involved in heterosis for seedling and yield traits in oilseed rape (Brassica napus L.). Theor Appl Genet 120:271–281

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Butruille DV, Guries RP, Osborn TC (1999) Linkage analysis of molecular markers and quantitative trait loci in populations of inbred backcross lines of Brassica napus L. Genetics 153:949–964

    PubMed Central  CAS  PubMed  Google Scholar 

  • Cao X, Liu B, Zhang Y (2013) SEA: a software package of segregation analysis of quantitative traits in plants. J Nanjing Agric Univ 36:1–6

    Google Scholar 

  • Chalhoub B, Denoeud F, Liu S, Parkin IA, Tang H, Wang X, Chiquet J, Belcram H, Tong C, Samans B et al (2014) Early allopolyploid evolution in the post-Neolithic Brassica napus oilseed genome. Science 345:950–953

    Article  CAS  PubMed  Google Scholar 

  • Chen W, Zhang Y, Liu XP, Chen BY, Tu JX, Fu TD (2007) Detection of QTL for six yield-related traits in oilseed rape (Brassica napus) using DH and immortalized F2 populations. Theor Appl Genet 115:849–858

    Article  CAS  PubMed  Google Scholar 

  • Ding G, Zhao Z, Liao Y, Hu Y, Shi L, Long Y, Xu F (2012) Quantitative trait loci for seed yield and yield-related traits, and their responses to reduced phosphorus supply in Brassica napus. Ann Bot 109:747–759

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Feng G, Qin Z, Yan J, Zhang X, Hu Y (2011) Arabidopsis ORGAN SIZE RELATED1 regulates organ growth and final organ size in orchestration with ARGOS and ARL. New Phytol 191:635–646

    Article  CAS  PubMed  Google Scholar 

  • Feng J, Long Y, Shi L, Shi JQ, Barker G, Meng JL (2012) Characterization of metabolite quantitative trait loci and metabolic networks that control glucosinolate concentration in the seeds and leaves of Brassica napus. New Phytol 193:96–108

    Article  CAS  PubMed  Google Scholar 

  • Flint J, Valdar W, Shifman S, Mott R (2005) Strategies for mapping and cloning quantitative trait genes in rodents. Nat Rev Genet 6:271–286

    Article  CAS  PubMed  Google Scholar 

  • Gai J, Zhang YM, Wang JK (2003) Genetic system of quantitative traits in plants. Science press, Beijing

    Google Scholar 

  • Goffinet B, Gerber S (2000) Quantitative trait loci: a meta-analysis. Genetics 155:463–473

    PubMed Central  CAS  PubMed  Google Scholar 

  • Han Y, Xie D, Teng W, Zhang S, Chang W, Li W (2011) Dynamic QTL analysis of linolenic acid content in different developmental stages of soybean seed. Theor Appl Genet 122:1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Hu Y, Poh HM, Chua NH (2006) The Arabidopsis ARGOS-LIKE gene regulates cell expansion during organ growth. Plant J 47:1–9

    Article  CAS  PubMed  Google Scholar 

  • Islam N, Evans EJ (1994) Influence of lodging and nitrogen rate on the yield and yield attributes of oilseed rape (Brassica napus L.). Theor Appl Genet 88:530–534

    Article  CAS  PubMed  Google Scholar 

  • Jiang C, Shi J, Li R, Long Y, Wang H, Li D, Zhao J, Meng J (2014) Quantitative trait loci that control the oil content variation of rapeseed (Brassica napus L.). Theor Appl Genet 127:957–968

    Article  CAS  PubMed  Google Scholar 

  • Koch MA, Haubold B, Mitchell-Olds T (2000) Comparative evolutionary analysis of chalcone synthase and alcohol dehydrogenase loci in Arabidopsis, Arabis, and related genera (Brassicaceae). Mol Biol Evol 17:1483–1498

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Shen J, Wang T, Chen Q, Zhang X, Fu T, Meng J, Tu J, Ma C (2007) QTL analysis of yield-related traits and their association with functional markers in Brassica napus L. Crop Pasture Sci 58:759–766

    Article  CAS  Google Scholar 

  • Li YB, Wu CJ, Xing YZ, Chen HL, He YQ (2008) Dynamic QTL analysis for rice blast resistance under natural infection conditions. Aust J Crop Sci 2:73–82

    CAS  Google Scholar 

  • Liu J, Yang J, Li R, Shi L, Zhang C, Long Y, Xu F, Meng J (2009) Analysis of genetic factors that control shoot mineral concentrations in rapeseed (Brassica napus) in different boron environments. Plant Soil 320:255–266

    Article  CAS  Google Scholar 

  • Liu G, Zhu H, Liu S, Zeng R, Zhang Z, Li W, Ding X, Zhao F, Zhang G (2010) Unconditional and conditional QTL mapping for the developmental behavior of tiller number in rice (Oryza sativa L.). Genetica 138:885–893

    Article  PubMed  Google Scholar 

  • Liu L, Qu C, Wittkop B, Yi B, Xiao Y, He Y, Snowdon RJ, Li J (2013) A high-density SNP map for accurate mapping of seed fibre QTL in Brassica napus L. PLoS One 8:e83052

    Article  PubMed Central  PubMed  Google Scholar 

  • Liu S, Liu Y, Yang X, Tong C, Edwards D, Parkin IA, Zhao M, Ma J, Yu J, Huang S, Wang X et al (2014) The Brassica oleracea genome reveals the asymmetrical evolution of polyploid genomes. Nat Commun 5:3930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Long Y, Shi J, Qiu D, Li R, Zhang C, Wang J, Hou J, Zhao J, Shi L, Park BS, Choi SR, Lim YP, Meng J (2007) Flowering time quantitative trait loci analysis of oilseed Brassica in multiple environments and genomewide alignment with Arabidopsis. Genetics 177:2433–2444

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mauricio R (2001) Mapping quantitative trait loci in plants: uses and caveats for evolutionary biology. Nat Rev Genet 2:370–381

    Article  CAS  PubMed  Google Scholar 

  • McCouch SR, Cho YG, Yano M, Paul E, Blinstrub M, Morishima H, Kinoshita T (1997) Report on QTL nomenclature. Rice Genet Newsl 14:11–13

    Google Scholar 

  • Mei DS, Wang HZ, Hu Q, Li YD, Xu YS, Li YC (2009) QTL analysis on plant height and flowering time in Brassica napus. Plant Breeding 128:458–465

    Article  Google Scholar 

  • Parkin IA, Gulden SM, Sharpe AG, Lukens L, Trick M, Osborn TC, Lydiate DJ (2005) Segmental structure of the Brassica napus genome based on comparative analysis with Arabidopsis thaliana. Genetics 171:765–781

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Pimenta Lange MJ, Lange T (2006) Gibberellin biosynthesis and the regulation of plant development. Plant Biol 8:281–290

    Article  CAS  PubMed  Google Scholar 

  • Quijada PA, Udall JA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 1. Identification of genomic regions from winter germplasm. Theor Appl Genet 113:549–561

    Article  CAS  PubMed  Google Scholar 

  • Raman R, Allen H, Diffey S, Raman H, Martin P, McKelvie K (2009) Localisation of quantitative trait loci for quality attributes in a doubled haploid population of wheat (Triticum aestivum L.). Genome 52:701–715

    Article  CAS  PubMed  Google Scholar 

  • Raman H, Dalton-Morgan J, Diffey S, Raman R, Alamery S, Edwards D, Batley J (2014) SNP markers-based map construction and genome-wide linkage analysis in Brassica napus. Plant Biotechnol J 12:851–860

    Article  CAS  PubMed  Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008) Genetic analysis reveals that C19-GA2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Schranz ME, Lysak MA, Mitchell-Olds T (2006) The ABC’s of comparative genomics in the Brassicaceae: building blocks of crucifer genomes. Trends Plant Sci 11:535–542

    Article  CAS  PubMed  Google Scholar 

  • Shi J, Li R, Qiu D, Jiang C, Long Y, Morgan C, Bancroft I, Zhao J, Meng J (2009) Unraveling the complex trait of crop yield with quantitative trait loci mapping in Brassica napus. Genetics 182:851–861

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun D, Li W, Zhang Z, Chen Q, Ning H, Qiu L, Sun G (2006) Quantitative trait loci analysis for the developmental behavior of Soybean (Glycine max L. Merr.). Theor Appl Genet 112:665–673

    Article  CAS  PubMed  Google Scholar 

  • Takai T, Fukuta Y, Shiraiwa T, Horie T (2005) Time-related mapping of quantitative trait loci controlling grain-filling in rice (Oryza sativa L.). J Exp Bot 56:2107–2118

    Article  CAS  PubMed  Google Scholar 

  • Teng W, Han Y, Du Y, Sun D, Zhang Z, Qiu L, Sun G, Li W (2009) QTL analyses of seed weight during the development of soybean (Glycine max L. Merr.). Heredity 102:372–380

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Udall JA, Quijada PA, Lambert B, Osborn TC (2006) Quantitative trait analysis of seed yield and other complex traits in hybrid spring rapeseed (Brassica napus L.): 2. Identification of alleles from unadapted germplasm. Theor Appl Genet 113:597–609

    Article  CAS  PubMed  Google Scholar 

  • Varshney RK, Marcel TC, Ramsay L, Russell J, Roder MS, Stein N, Waugh R, Langridge P, Niks RE, Graner A (2007) A high density barley microsatellite consensus map with 775 SSR loci. Theor Appl Genet 114:1091–1103

    Article  CAS  PubMed  Google Scholar 

  • Vodkin LO, Khanna A, Shealy R, Clough SJ, Gonzalez DO, Philip R, Zabala G, Thibaud-Nissen F et al (2004) Microarrays for global expression constructed with a low redundancy set of 27,500 sequenced cDNAs representing an array of developmental stages and physiological conditions of the soybean plant. BMC Genom 5:73

    Article  Google Scholar 

  • Wang JK, Gai JY (2001) Mixed inheritance model for resistance to agromyzid beanfly (Melanagromyza sojae Zehntner) in soybean. Euphytica 122:9–18

    Article  CAS  Google Scholar 

  • Wang HL, Zhang WW, Liu LL, Shen YY, Wang JK, Jiang L, Zhai HQ, Wan JM (2008) Dynamic QTL analysis on rice fat content and fat index using recombinant inbred lines. Cereal Chem 85:769–775

    Article  CAS  Google Scholar 

  • Wang Z, Wu X, Ren Q, Chang X, Li R, Jing R (2010) QTL mapping for developmental behavior of plant height in wheat (Triticum aestivum L.). Euphytica 174:447–458

    Article  Google Scholar 

  • Wang X, Wang H, Wang J, Sun R, Wu J, Liu S, Bai Y, Mun JH, Bancroft I, Cheng F, Huang S, Li X, Hua W et al (2011) The genome of the mesopolyploid crop species Brassica rapa. Nat Genet 43:1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Basten CJ, Zeng ZB (2012) Windows QTL Cartographer 2.5. Department of Statistics, North Carolina State University, Raleigh

  • Wang X, Wang H, Long Y, Li D, Yin Y, Tian J, Chen L, Liu L, Zhao W, Zhao Y, Yu L, Li M (2013) Identification of QTLs associated with oil content in a high-oil Brassica napus cultivar and construction of a high-density consensus map for QTLs comparison in B. napus. PLoS One 8:e80569

    Article  PubMed Central  PubMed  Google Scholar 

  • Wenzl P, Li H, Carling J, Zhou M, Raman H, Paul E, Hearnden P, Maier C, Xia L, Caig V, Ovesna J et al (2006) A high-density consensus map of barley linking DArT markers to SSR, RFLP and STS loci and agricultural traits. BMC Genom 7:206

    Article  Google Scholar 

  • Wu X, Wang Z, Chang X, Jing R (2010) Genetic dissection of the developmental behaviours of plant height in wheat under diverse water regimes. J Exp Bot 61:2923–2937

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Würschum T, Liu W, Maurer HP, Abel S, Reif JC (2012) Dissecting the genetic architecture of agronomic traits in multiple segregating populations in rapeseed (Brassica napus L.). Theor Appl Genet 124:153–161

    Article  PubMed  Google Scholar 

  • Xu Y (1997) Quantitative trait loci: separating, pyramiding, and cloning. Plant Breed Rev 15:85–139

    CAS  Google Scholar 

  • Xu YB, Shen ZT (1991) Diallel analysis of tiller number at different growth stages in rice (Oryza sativa L.). Theor Appl Genet 83:243–249

    Article  CAS  PubMed  Google Scholar 

  • Yan J, Zhu J, He C, Benmoussa M, Wu P (1998) Molecular dissection of developmental behavior of plant height in rice (Oryza sativa L.). Genetics 150:1257–1265

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yan J, Tang H, Huang Y, Shi Y, Li J, Zheng Y (2003) Dynamic analysis of QTL for plant height at different developmental stages in maize (Zea mays L.). Chinese Sci Bull 48:2601–2607

    Article  Google Scholar 

  • Yang YW, Lai KN, Tai PY, Li WH (1999) Rates of nucleotide substitution in angiosperm mitochondrial DNA sequences and dates of divergence between Brassica and other angiosperm lineages. J Mol Evol 48:597–604

    Article  CAS  PubMed  Google Scholar 

  • Yang G, Xing Y, Li S, Ding J, Yue B, Deng K, Li Y, Zhu Y (2006) Molecular dissection of developmental behavior of tiller number and plant height and their relationship in rice (Oryza sativa L.). Hereditas 143:236–245

    Article  PubMed  Google Scholar 

  • Yang M, Ding G, Shi L, Feng J, Xu F, Meng J (2010) Quantitative trait loci for root morphology in response to low phosphorus stress in Brassica napus. Theor Appl Genet 121:181–193

    Article  CAS  PubMed  Google Scholar 

  • Zhao JY, Becker HC, Ding HD, Zhang YF, Zhang DQ, Ecke W (2005) QTL of three agronomically important traits and their interactions with environment in a European × Chinese rapeseed population. Acta Genet Sin 32:969–978

    CAS  PubMed  Google Scholar 

  • Zhao ZK, Wu LK, Nian FZ, Ding GD, Shi TX, Zhang DD, Shi L, Xu FS, Meng JL (2012) Dissecting quantitative trait loci for boron efficiency across multiple environments in Brassica napus. PLoS One 7:e45215

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zheng LN, Zhang WW, Chen XG, Ma J, Chen WW, Zhao ZG, Zhai HQ, Wan JM (2011) Dynamic QTL analysis of rice protein content and protein index using recombinant inbred lines. J Plant Biol 54:321–328

    Article  CAS  Google Scholar 

  • Zhou Q, Fu D, Mason AS, Zeng Y, Zhao C, Huang Y (2013) In silico integration of quantitative trait loci for seed yield and yield-related traits in Brassica napus. Mol Breeding 33:881–894

    Article  CAS  Google Scholar 

  • Zhu J (1995) Analysis of conditional genetic effects and variance components in developmental genetics. Genetics 141:1633–1639

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The work was supported by the National Basic Research Program of China (2015CB150205), the International Cooperation in Science and Technology Projects (2014DFA32210), Jiangsu Agriculture Science and Technology Innovation Fund (CX(11)4009) and the New Century Talents Support Program of the Ministry of Education of China (NCET110172). We give our thanks to Professor Yuanming Zhang of Nanjing Agricultural University for kindly provided the software package SEA-G3DH.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical standard

The authors declare that the experiments comply with the current laws of the country in which they were performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maoteng Li.

Additional information

Communicated by I. Parkin.

X. Wang and H. Wang contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 89 kb)

Supplementary material 2 (PDF 4250 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Wang, H., Long, Y. et al. Dynamic and comparative QTL analysis for plant height in different developmental stages of Brassica napus L.. Theor Appl Genet 128, 1175–1192 (2015). https://doi.org/10.1007/s00122-015-2498-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-015-2498-9

Keywords

Navigation