Skip to main content
Log in

Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice (Oryza sativa L.)

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 29 November 2016

Abstract

Key message

A major QTL for heading date, qHD5, was fine-mapped to a 52.59-kb region on the short arm of rice chromosome 5.

Abstract

Heading date (HD) is one of the most important traits that enables rice to adapt to seasonal differences and specific growth conditions in diverse growing regions. In this study, a major-effect quantitative trait locus (QTL), qHD5, was resolved as a single Medelian factor that causes NIL(BG1) and NIL(XLJ) (two near-isogenic lines (NILs) used in our study) to have at a minimum of 10-day difference in HD under both long-day and short-day conditions in rice. qHD5 was initially mapped to a 309.52-kb genomic region in our previous study. Here, using an advanced BC4F3 population and map-based cloning, we further narrowed the location of qHD5 to a 52.59-kb region between the H71 and RD502 markers. Sequence analysis revealed that Os05g03040, which putatively encodes an AP2 (APETALA2) transcription factor, has six single nucleotide polymorphisms (SNPs) between NIL(BG1) and NIL(XLJ). On this basis, this gene was concluded to be the most probable candidate gene for qHD5. Our results also showed that Hd3a, RFT1, Hd1, Ehd1, and Ghd7 were differentially expressed in the two NILs. Moreover, qHD5 was found to affect yield-related traits such as flag leaf width, flag leaf length, branch number, and 1000-grain weight.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aukerman MJ, Sakai H (2003) Regulation of flowering time and floral organ identity by a MicroRNA and its APETALA2-like target genes. Plant Cell 15:2730–2741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bian XF, Liu X, Zhao ZG, Jiang L, Gao H, Zhang YH, Zheng M, Chen LM, Liu SJ, Zhai HQ, Wan JM (2011) Heading date gene, dth3 controlled late flowering in O. Glaberrima Steud. by down-regulating Ehd1. Plant Cell Rep 30:2243–2254

    Article  CAS  PubMed  Google Scholar 

  • Borovsky Y, Sharma VK, Verbakel H, Paran I (2015) CaAP2 transcription factor is a candidate gene for a flowering repressor and a candidate for controlling natural variation of flowering time in Capsicum annuum. Theor Appl Genet 128:1073–1082

    Article  CAS  PubMed  Google Scholar 

  • Chen JY, Guo L, Ma H, Chen YY, Zhang HW, Ying JZ, Zhuang JY (2014) Fine mapping of qHd1, a minor heading date QTL with pleiotropism for yield traits in rice (Oryza sativa L.). Theor Appl Genet 127:2515–2524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chuck G, Meeley RB, Hake S (1998) The control of maize spikelet meristem fate by the APETALA2-like gene indeterminate spikelet1. Genes Dev 12:1145–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chung MY, Vrebalov J, Alba R, Lee J, McQuinn R, Chung JD, Klein P, Giovannoni J (2010) A tomato (Solanum lycopersicum) APETALA2/ERF gene, SlAP2a, is a negative regulator of fruit ripening. Plant J 64:936–947

    Article  CAS  PubMed  Google Scholar 

  • De Belle I, Wu JX, Sperandio S, Mercola D, Adamson ED (2003) In vivo cloning and characterization of a new growth suppressor protein TOE1 as a direct target gene of Egr1. J Biol Chem 278:14306–14312

    Article  PubMed  Google Scholar 

  • Doi K, Izawa T, Fuse T, Yamanouchi U, Kubo T, Shimatani Z, Yano M, Yoshimura A (2004) Ehd1, a B-type response regulator in rice, confers short-day promotion of flowering and controls FT-like gene expression independently of Hd1. Genes Dev 18:926–936

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Endo-Higashi N, Izawa T (2011) Flowering time genes heading date 1 and early heading date 1 together control panicle development in rice. Plant Cell Physiol 52:1083–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fujino K, Yamanouchi U, Yano M (2013) Roles of the Hd5 gene controlling heading date for adaptation to the northern limits of rice cultivation. Theor Appl Genet 126:611–618

    Article  CAS  PubMed  Google Scholar 

  • Gao H, Zheng XM, Fei G, Chen J, Jin M, Ren Y, Wu W, Zhou K, Sheng P, Zhou F, Jiang L, Wang J, Zhang X, Guo X, Wang JL, Cheng Z, Wu C, Wang H, Wan JM (2013) Ehd4 encodes a novel and Oryza-genus-specific regulator of photoperiodic flowering in rice. PLoS Genet 9:e1003281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gao H, Jin M, Zheng X-M, Chen J, Yuan D, Xin Y, Wang M, Huang D, Zhang Z, Zhou K (2014) Days to heading 7, a major quantitative locus determining photoperiod sensitivity and regional adaptation in rice. Proc Natl Acad Sci USA 111:16337–16342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Glazinska P, Zienkiewicz A, Wojciechowski W, Kopcewicz J (2009) The putative miR172 target gene In APETALA2-like is involved in the photoperiodic flower induction of Ipomoeanil. Plant Physiol 166:1801–1813

    Article  CAS  Google Scholar 

  • Hori K, Ogiso-Tanaka E, Matsubara K, Yamanouchi U, Ebana K, Yano M (2013) Hd16, a gene for casein kinase I, is involved in the control of rice flowering time by modulating the day-length response. Plant J 76:36–46

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jung JH, Lee S, Yun J, Lee M, Park CM (2014) The miR172 target TOE3 represses AGAMOUS expression during Arabidopsis floral patterning. Plant Sci 215–216:29–38

    Article  PubMed  Google Scholar 

  • Kim SK, Yun CH, Lee JH, Jang YH, Park HY, Kim JK (2008) OsCO3, a CONSTANS-LIKE gene, controls flowering by negatively regulating the expression of FT-like genes under SD conditions in rice. Planta 228:355–365

    Article  CAS  PubMed  Google Scholar 

  • Kojima S (2002) Hd3a, a rice ortholog of the Arabidopsis FT gene, promotes transition to flowering downstream of Hd1 under short-day conditions. Plant Cell Physiol 43:1096–1105

    Article  CAS  PubMed  Google Scholar 

  • Koo BH, Yoo SC, Park JW, Kwon CT, Lee BD, An G, Zhang Z, Li J, Li Z, Paek NC (2013) Natural variation in OsPRR37 regulates heading date and contributes to rice cultivation at a wide range of latitudes. Mol Plant 6:1877–1888

    Article  CAS  PubMed  Google Scholar 

  • Lee D-Y, An G (2012) Two AP2 family genes, supernumerary bract (SNB) and Osindeterminate spikelet 1 (OsIDS1), synergistically control inflorescence architecture and floral meristem establishment in rice. Plant J 69:445–461

    Article  CAS  PubMed  Google Scholar 

  • Lee DY, Lee J, Moon S, Park SY, An G (2007) The rice heterochronic gene supernumerary bract regulates the transition from spikelet meristem to floral meristem. Plant J 49:64–78

    Article  CAS  PubMed  Google Scholar 

  • Lee YS, Lee DY, Cho LH, An G (2014) Rice miR172 induces flowering by suppressing OsIDS1 and SNB, two AP2 genes that negatively regulate expression of Ehd1 and florigens. Rice 7:1–13

    Article  Google Scholar 

  • Li D, Yang C, Li X, Gan Q, Zhao X, Zhu L (2009) Functional characterization of rice OsDof12. Planta 229:1159–1169

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Liang Z-W, Sasaki T, Yano M (2003) Fine mapping and characterization of quantitative trait loci Hd4 and Hd5 controlling heading date in rice. Breed Sci 53:51–59

    Article  CAS  Google Scholar 

  • Lin D, Jiang Q, Zheng K, Chen S, Zhou H, Gong X, Xu J, Teng S, Dong Y (2015) Mutation of the rice ASL2 gene encoding plastid ribosomal protein L21 causes chloroplast developmental defects and seedling death. Plant biology 17:599–607

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Mathieu J, Yant LJ, Mürdter F, Küttner F, Schmid M (2009) Repression of flowering by the miR172 target SMZ. PLoS Biol 7:e1000148

    Article  PubMed  PubMed Central  Google Scholar 

  • Matsubara K, Yamanouchi U, Nonoue Y, Sugimoto K, Wang ZX, Minobe Y, Yano M (2011) Ehd3, encoding a plant homeodomain finger-containing protein, is a critical promoter of rice flowering. Plant J 66:603–612

    Article  CAS  PubMed  Google Scholar 

  • Matsubara K, Ogiso-Tanaka E, Hori K, Ebana K, Ando T, Yano M (2012) Natural variation in Hd17, a homolog of Arabidopsis ELF3 that is involved in rice photoperiodic flowering. Plant Cell Physiol 53:709–716

    Article  CAS  PubMed  Google Scholar 

  • Moose SP, Sisco PH (1994) Glossy15 controls the epidermal juvenile-to-adult phase transition in maize. Plant Cell 6:1343–1355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray M, Thompson WF (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ogiso-Tanaka E, Matsubara K, Yamamoto S, Nonoue Y, Wu J, Fujisawa H, Ishikubo H, Tanaka T, Ando T, Matsumoto T, Yano M (2013) Natural variation of the RICE FLOWERING LOCUS T 1 contributes to flowering time divergence in rice. PLoS One 8:e75959

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Okamuro JK, Caster B, Villarroel R (1997) The AP2 domain of APETALA2 defines a large new family of DNA binding proteins in Arabidopsis. Proc Natl Acad Sci USA 94:7076–7081

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salvi S, Sponza G, Morgante M, Tomes D, Niu X, Fengler KA, Li B (2007) Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA 104:11376–11381

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • SAS Institute S Inc (1990) SAS/STAT user’s guide, version 6. SAS institute, Cary

    Google Scholar 

  • Song J, Wei X, Shao G, Sheng Z, Chen D, Liu C, Jiao G, Xie L, Tang S, Hu P (2014) The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol 84:301–314

    Article  CAS  PubMed  Google Scholar 

  • Sperandio S, Tardito S, Surzycki A, Latterich M, de Belle I (2009) TOE1 interacts with p53 to modulate its transactivation potential. FEBS Lett 583:2165–2170

    Article  CAS  PubMed  Google Scholar 

  • Takahashi Y, Shomura A, Sasaki T, Yano M (2001) Hd6, a rice quantitative trait locus involved in photoperiod sensitivity, encodes the alpha subunit of protein kinase CK2. Proc Natl Acad Sci USA 98:7922–7927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeuchi Y, Lin S, Sasaki T, Yano M (2003) Fine linkage mapping enables dissection of closely linked quantitative trait loci for seed dormancy and heading in rice. Theor Appl Genet 107:1174–1180

    Article  CAS  PubMed  Google Scholar 

  • Tsuji H, Tachibana C, Tamaki S, Taoka K, Kyozuka J, Shimamoto K (2015) Hd3a promotes lateral branching in rice. Plant J 82:256–266

    Article  CAS  PubMed  Google Scholar 

  • Wei X, Xu J, Guo H, Jiang L, Chen S, Yu C, Zhou Z, Hu P, Zhai H, Wan J (2010) DTH8 suppresses flowering in rice, influencing plant height and yield potential simultaneously. Plant Physiol 153:1747–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu W, Zheng XM, Lu G, Zhong Z, Gao H, Chen L, Wu C, Wang HJ, Wang Q, Zhou K, Wang JL, Wu F, Zhang X, Guo X, Cheng Z, Lei C, Lin Q, Jiang L, Wang H, Ge S, Wan J (2013) Association of functional nucleotide polymorphisms at DTH2 with the northward expansion of rice cultivation in Asia. Proc Natl Acad Sci USA 110:2775–2780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue W, Xing Y, Weng X, Zhao Y, Tang W, Wang L, Zhou H, Yu S, Xu C, Li X, Zhang Q (2008) Natural variation in Ghd7 is an important regulator of heading date and yield potential in rice. Nat Genet 40:761–767

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Kuboki Y, Lin S, Sasaki T, Yano M (1998) Fine mapping of quantitative trait loci Hd-1, Hd-2 and Hd-3, controlling heading date of rice, as single Mendelian factors. Theor Appl Genet 97:37–44

    Article  CAS  Google Scholar 

  • Yano M, Harushima Y, Nagamura Y, Kurata N, Minobe Y, Sasaki T (1997) Identification of quantitative trait loci controlling heading date in rice using a high-density linkage map. Theor Appl Genet 95:1025–1032

    Article  CAS  Google Scholar 

  • Yano M, Katayose Y, Ashikari M, Yamanouchi U, Monna L, Fuse T, Baba T, Yamamoto K, Umehara Y, Nagamura Y (2000) Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12:2473–2483

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yano M, Kojima S, Takahashi Y, Lin H, Sasaki T (2001) Genetic control of flowering time in rice, a short-day plant. Plant Physiol 127:1425–1429

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Sun B, Lin Z, Gao Z, Yu P, Liu Q, Shen X, Zhang Y, Chen D, Cheng S, Cao L (2015) Genetic mapping of a QTL controlling source-sink size and heading date in rice. Gene 571:263–270

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang L, Zeng L, Zhang C, Ma H (2015) Arabidopsis TOE proteins convey a photoperiodic signal to antagonize CONSTANS and regulate flowering time. Genes Dev 29:975–987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the National Natural Science Foundation of China (Grants 31101209, 31221004, and 31501290) and the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences (CAAS-ASTIP-2013-CNRRI).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-Yong Cao or Shi-Hua Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest regarding the publication of this paper.

Additional information

Communicated by M. Wissuwa.

B. Sun and X.-D. Zhan contributed equally to this work.

The original version of this article was revised: A value (52.92-kb) under the heading ‘‘Key message’’ was incorrect. This error has been corrected.

An erratum to this article is available at http://dx.doi.org/10.1007/s00122-016-2821-0.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 210 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, B., Zhan, XD., Lin, ZC. et al. Fine mapping and candidate gene analysis of qHD5, a novel major QTL with pleiotropism for yield-related traits in rice (Oryza sativa L.). Theor Appl Genet 130, 247–258 (2017). https://doi.org/10.1007/s00122-016-2787-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-016-2787-y

Keywords

Navigation