Skip to main content
Log in

The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Plastidial ribosome proteins (PRPs) form the major component of the plastidial ribosome. Here we describe a rice mutant named wlp1 (white leaf and panicles 1) selected from a population of tissue culture regenerants. The early seedling leaves of the mutant were albino, as was the immature panicle at heading, and the phenotype was more strongly expressed in plants exposed to low temperature conditions. Changes in the leaf pigmentation of the mutant were due to altered chlorophyll content and chloroplast development. Positional cloning of WLP1, followed by complementation and knock-down experiments, showed that it encodes a 50S ribosome L13 protein. The WLP1 protein localized to the chloroplast. WLP1 was mainly transcribed in green tissues and particularly abundantly in the early seedling leaves. In addition, the expression level of WLP1 was induced by the low temperature. The transcription pattern of a number of genes involved in plastidial transcription/translation and in photosynthesis was altered in the wlp1 mutants. These results reveal that WLP1 is required for normal chloroplast development, especially under low temperature conditions. This is the first report on the function of PRPs in rice.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Archer EK, Bonnett HT (1987) Characterization of a virescent chloroplast mutant of tobacco. Plant Physiol 83:920–925

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Arimura S, Takusagawa S, Hirai A, Tsutsumi N (1998) Genomic structures and the 5 ‘-flanking regions of the nuclear genes for chloroplast ribosomal proteins L13 and L24 of rice (Oryza sativa L.). Breed Sci 48:145–149

    CAS  Google Scholar 

  • Arimura S, Takusagawa S, Hatano S, Nakazono M, Hirai A, Tsutsumi N (1999) A novel plant nuclear gene encoding chloroplast ribosomal protein S9 has a transit peptide related to that of rice chloroplast ribosomal protein L12. FEBS Lett 450:231–234

    Article  CAS  PubMed  Google Scholar 

  • Barkan A (1993) Nuclear mutants of maize with defects in chloroplast polysome assembly have altered chloroplast RNA metabolism. Plant Cell 5:389–402

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beick S, Schmitz-Linneweber C, Williams-Carrier R, Jensen B, Barkan A (2008) The pentatricopeptide repeat protein PPR5 stabilizes a specific tRNA precursor in maize chloroplasts. Mol Cell Biol 28:5337–5347

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chandra Sanyal S, Liljas A (2000) The end of the beginning: structural studies of ribosomal proteins. Curr Opin Struct Biol 10:633–636

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Tao L, Zeng L, Vega-Sanchez ME, Umemura K, Wang GL (2006) A highly efficient transient protoplast system for analyzing defence gene expression and protein–protein interactions in rice. Mol Plant Pathol 7:417–427

    Article  CAS  PubMed  Google Scholar 

  • Condon C, Squires C, Squires CL (1995) Control of rRNA transcription in Escherichia coli. Microbiol Rev 59:623–645

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cote JC, Wu R (1989) Sequence of the chloroplast rps14 gene encoding the chloroplast ribosomal protein S14 from rice. Nucleic Acids Res 17:1780

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Dresios J, Derkatch IL, Liebman SW, Synetos D (2000) Yeast ribosomal protein L24 affects the kinetics of protein synthesis and ribosomal protein L39 improves translational accuracy, while mutants lacking both remain viable. Biochemistry 39:7236–7244

    Article  CAS  PubMed  Google Scholar 

  • Gerdes SY, Scholle MD, Campbell JW, Balazsi G, Ravasz E, Daugherty MD, Somera AL, Kyrpides NC, Anderson I, Gelfand MS, Bhattacharya A, Kapatral V, D’Souza M, Baev MV, Grechkin Y, Mseeh F, Fonstein MY, Overbeek R, Barabasi AL, Oltvai ZN, Osterman AL (2003) Experimental determination and system level analysis of essential genes in Escherichia coli MG1655. J Bacteriol 185:5673–5684

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Gotz F, Dabbs ER, Gualerzi CO (1990) Escherichia coli 30S mutants lacking protein S20 are defective in translation initiation. Biochim Biophys Acta 1050:93–97

    Article  CAS  PubMed  Google Scholar 

  • Hajdukiewicz PT, Allison LA, Maliga P (1997) The two RNA polymerases encoded by the nuclear and the plastid compartments transcribe distinct groups of genes in tobacco plastids. EMBO J 16:4041–4048

    Article  CAS  PubMed  Google Scholar 

  • Han CD, Coe EH Jr, Martienssen RA (1992) Molecular cloning and characterization of iojap (ij), a pattern striping gene of maize. EMBO J 11:4037–4046

    CAS  PubMed  Google Scholar 

  • Herold M, Nowotny V, Dabbs ER, Nierhaus KH (1986) Assembly analysis of ribosomes from a mutant lacking the assembly-initiator protein L24: lack of L24 induces temperature sensitivity. Mol Gen Genet 203:281–287

    Article  CAS  PubMed  Google Scholar 

  • Hess WR, Prombona A, Fieder B, Subramanian AR, Borner T (1993) Chloroplast rps15 and the rpoB/C1/C2 gene cluster are strongly transcribed in ribosome-deficient plastids: evidence for a functioning non-chloroplast-encoded RNA polymerase. EMBO J 12:563–571

    CAS  PubMed  Google Scholar 

  • Hess WR, Muller A, Nagy F, Borner T (1994) Ribosome-deficient plastids affect transcription of light-induced nuclear genes: genetic evidence for a plastid-derived signal. Mol Gen Genet 242:305–312

    Article  CAS  PubMed  Google Scholar 

  • Hiei Y, Ohta S, Komari T, Kumashiro T (1994) Efficient transformation of rice (Oryza sativa L.) mediated by Agrobacterium and sequence analysis of the boundaries of the T-DNA. Plant J 6:271–282

    Article  CAS  PubMed  Google Scholar 

  • Inada N, Sakai A, Kuroiwa H, Kuroiwa T (1998) Three-dimensional analysis of the senescence program in rice (Oryza sativa L.) coleoptiles. Planta 206:585–597

    Article  CAS  Google Scholar 

  • Ishizaki Y, Tsunoyama Y, Hatano K, Ando K, Kato K, Shinmyo A, Kobori M, Takeba G, Nakahira Y, Shiina T (2005) A nuclear-encoded sigma factor, Arabidopsis SIG6, recognizes sigma-70 type chloroplast promoters and regulates early chloroplast development in cotyledons. Plant J 42:133–144

    Article  CAS  PubMed  Google Scholar 

  • Isono K, Krauss J, Hirota Y (1976) Isolation and characterization of temperature-sensitive mutants of Escherichia coli with altered ribosomal proteins. Mol Gen Genet 149:297–302

    Article  CAS  PubMed  Google Scholar 

  • Jung KH, Hur J, Ryu CH, Choi Y, Chung YY, Miyao A, Hirochika H, An G (2003) Characterization of a rice chlorophyll-deficient mutant using the T-DNA gene-trap system. Plant Cell Physiol 44:463–472

    Article  CAS  PubMed  Google Scholar 

  • Koussevitzky S, Stanne TM, Peto CA, Giap T, Sjogren LLE, Zhao Y, Clarke AK, Chory J (2007) An Arabidopsis thaliana virescent mutant reveals a role for ClpR1 in plastid development. Plant Mol Biol 63:85–96

    Article  CAS  PubMed  Google Scholar 

  • Kusaka M, Kurashige M, Hirai A, Tsutsumi N (1998) Characterization of two rice genes for nuclear-encoded chloroplast ribosomal protein L12 and phylogenetic analysis of the acquisition of transit peptides and gene duplication. Theor Appl Genet 97:110–115

    Article  CAS  Google Scholar 

  • Kusumi K, Sakata C, Nakamura T, Kawasaki S, Yoshimura A, Iba K (2011) A plastid protein NUS1 is essential for build-up of the genetic system for early chloroplast development under cold stress conditions. Plant J 68:1039–1050

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(T)(-Delta Delta C) method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Lotti M, Dabbs ER, Hasenbank R, Stoffler-Meilicke M, Stoffler G (1983) Characterisation of a mutant from Escherichia coli lacking protein L15 and localisation of protein L15 by immuno-electron microscopy. Mol Gen Genet 192:295–300

    Article  CAS  PubMed  Google Scholar 

  • Ma ZR, Dooner HK (2004) A mutation in the nuclear-encoded plastid ribosomal protein S9 leads to early embryo lethality in maize. Plant J 37:92–103

    Article  CAS  PubMed  Google Scholar 

  • Maguire BA, Zimmermann RA (2001) The ribosome in focus. Cell 104:813–816

    Article  CAS  PubMed  Google Scholar 

  • Maliga P (1998) Two plastid RNA polymerases of higher plants: an evolving story. Trends Plant Sci 3:4–6

    Article  Google Scholar 

  • Mandel MA, Feldmann KA, Herrera-Estrella L, Rocha-Sosa M, Leon P (1996) CLA1, a novel gene required for chloroplast development, is highly conserved in evolution. Plant J 9:649–658

    Article  CAS  PubMed  Google Scholar 

  • McElwain KB, Boynton JE, Gillham NW (1993) A nuclear mutation conferring thiostrepton resistance in Chlamydomonas reinhardtii affects a chloroplast ribosomal protein related to Escherichia coli ribosomal protein L11. Mol Gen Genet 241:564–572

    Article  CAS  PubMed  Google Scholar 

  • Morita-Yamamuro C, Tsutsui T, Tanaka A, Yamaguchi J (2004) Knock-out of the plastid ribosomal protein S21 causes impaired photosynthesis and sugar-response during germination and seedling development in Arabidopsis thaliana. Plant Cell Physiol 45:781–788

    Article  CAS  PubMed  Google Scholar 

  • Nelson BK, Cai X, Nebenfuhr A (2007) A multicolored set of in vivo organelle markers for co-localization studies in Arabidopsis and other plants. Plant J 51:1126–1136

    Article  CAS  PubMed  Google Scholar 

  • Nishi K, Morel-Deville F, Hershey JW, Leighton T, Schnier J (1988) An eIF-4A-like protein is a suppressor of an Escherichia coli mutant defective in 50S ribosomal subunit assembly. Nature 336:496–498

    Article  CAS  PubMed  Google Scholar 

  • Nott A, Jung HS, Koussevitzky S, Chory J (2006) Plastid-to-nucleus retrograde signaling. Annu Rev Plant Biol 57:739–759

    Article  CAS  PubMed  Google Scholar 

  • Pesaresi P, Varotto C, Meurer J, Jahns P, Salamini F, Leister D (2001) Knock-out of the plastid ribosomal protein L11 in Arabidopsis: effects on mRNA translation and photosynthesis. Plant J 27:179–189

    Article  CAS  PubMed  Google Scholar 

  • Phua SH, Srinivasa BR, Subramanian AR (1989) Chloroplast ribosomal protein L13 is encoded in the nucleus and is considerably larger than its bacterial homologue. Construction, immunoisolation, and nucleotide sequence (including transit peptide) its cDNA clone from an angiosperm. J Biol Chem 264:1968–1971

    CAS  PubMed  Google Scholar 

  • Ramakrishnan V, Moore PB (2001) Atomic structures at last: the ribosome in 2000. Curr Opin Struct Biol 11:144–154

    Article  CAS  PubMed  Google Scholar 

  • Ramundo S, Rahire M, Schaad O, Rochaix JD (2013) Repression of essential chloroplast genes reveals new signaling pathways and regulatory feedback loops in Chlamydomonas. Plant Cell 25:167–186

    Article  CAS  PubMed  Google Scholar 

  • Rogalski M, Ruf S, Bock R (2006) Tobacco plastid ribosomal protein S18 is essential for cell survival. Nucleic Acids Res 34:4537–4545

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rogalski M, Schottler MA, Thiele W, Schulze WX, Bock R (2008) Rpl33, a nonessential plastid-encoded ribosomal protein in tobacco, is required under cold stress conditions. Plant Cell 20:2221–2237

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Russell D, Bogorad L (1987) Transcription analysis of the maize chloroplast gene for the ribosomal protein S4. Nucleic Acids Res 15:1853–1867

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Ryan PC, Lu M, Draper DE (1991) Recognition of the highly conserved GTPase center of 23S ribosomal RNA by ribosomal protein L11 and the antibiotic thiostrepton. J Mol Biol 221:1257–1268

    CAS  PubMed  Google Scholar 

  • Sander G (1983) Ribosomal protein L1 from Escherichia coli. Its role in the binding of tRNA to the ribosome and in elongation factor g-dependent gtp hydrolysis. J Biol Chem 258:10098–10103

    CAS  PubMed  Google Scholar 

  • Scarpella E, Rueb S, Meijer AH (2003) The RADICLELESS1 gene is required for vascular pattern formation in rice. Development 130:645–658

    Article  CAS  PubMed  Google Scholar 

  • Schmitz-Linneweber C, Williams-Carrier RE, Williams-Voelker PM, Kroeger TS, Vichas A, Barkan A (2006) A pentatricopeptide repeat protein facilitates the trans-splicing of the maize chloroplast rps12 pre-mRNA. Plant Cell 18:2650–2663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schultes NP, Sawers RJH, Brutnell TP, Krueger RW (2000) Maize high chlorophyll fluorescent 60 mutation is caused by an Ac disruption of the gene encoding the chloroplast ribosomal small subunit protein 17. Plant J 21:317–327

    Article  CAS  PubMed  Google Scholar 

  • Sharma MR, Wilson DN, Datta PP, Barat C, Schluenzen F, Fucini P, Agrawal RK (2007) Cryo-EM study of the spinach chloroplast ribosome reveals the structural and functional roles of plastid-specific ribosomal proteins. Proc Natl Acad Sci USA 104:19315–19320

    Article  CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Sugimoto H, Kusumi K, Noguchi K, Yano M, Yoshimura A, Iba K (2007) The rice nuclear gene, VIRESCENT 2, is essential for chloroplast development and encodes a novel type of guanylate kinase targeted to plastids and mitochondria. Plant J 52:512–527

    Article  CAS  PubMed  Google Scholar 

  • Tsutsumi N, Takusagawa S, Suzuki H, Hirai A (1996) Molecular cloning and nucleotide sequencing of nuclear genes coding for the chloroplast ribosomal proteins L13, L24, L28 of rice (Oryza sativa L). Plant Sci 121:167–174

    Article  CAS  Google Scholar 

  • Ueda M, Fujimoto M, Arimura S, Tsutsumi N, Kadowaki K (2006) Evidence for transit peptide acquisition through duplication and subsequent frameshift mutation of a preexisting protein gene in rice. Mol Biol Evol 23:2405–2412

    Article  CAS  PubMed  Google Scholar 

  • Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686

    Article  CAS  PubMed  Google Scholar 

  • Wu H, Zhang LX (2010) The PPR protein PDM1 is involved in the processing of rpoA pre-mRNA in Arabidopsis thaliana. Chin Sci Bull 55:3485–3489

    Article  CAS  Google Scholar 

  • Wu Z, Zhang X, He B, Diao L, Sheng S, Wang J, Guo X, Su N, Wang L, Jiang L, Wang C, Zhai H, Wan J (2007) A chlorophyll-deficient rice mutant with impaired chlorophyllide esterification in chlorophyll biosynthesis. Plant Physiol 145:29–40

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yamaguchi K, Subramanian AR (2000) The plastid ribosomal proteins - Identification of all the proteins in the 50S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28466–28482

    Article  CAS  PubMed  Google Scholar 

  • Yamaguchi K, von Knoblauch K, Subramanian AR (2000) The plastid ribosomal proteins—Identification of all the proteins in the 30S subunit of an organelle ribosome (chloroplast). J Biol Chem 275:28455–28465

    Article  CAS  PubMed  Google Scholar 

  • Yoo SC, Cho SH, Sugimoto H, Li J, Kusumi K, Koh HJ, Iba K, Paek NC (2009) Rice virescent3 and stripe1 encoding the large and small subunits of ribonucleotide reductase are required for chloroplast biogenesis during early leaf development. Plant Physiol 150:388–401

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang Q, Shen BZ, Dai XK, Mei MH, Saghai Maroof MA, Li ZB (1994) Using bulked extremes and recessive class to map genes for photoperiod-sensitive genic male sterility in rice. Proc Natl Acad Sci USA 91:8675–8679

    Article  CAS  PubMed  Google Scholar 

  • Zhou WB, Cheng YX, Yap A, Chateigner-Boutin AL, Delannoy E, Hammani K, Small I, Huang JR (2009) The Arabidopsis gene YS1 encoding a DYW protein is required for editing of rpoB transcripts and the rapid development of chloroplasts during early growth. Plant J 58:82–96

    Article  CAS  PubMed  Google Scholar 

  • Zubko MK, Day A (2002) Differential regulation of genes transcribed by nucleus-encoded plastid RNA polymerase, and DNA amplification, within ribosome-deficient plastids in stable phenocopies of cereal albino mutants. Mol Genet Genomics 267:27–37

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National High-tech R&D Program (863 Program) (No. 2011AA10A101, 2012AA101101), the Natural Science Foundation of China (No. 31201193, 31201195), Natural Science Foundation of Zhejiang province (No. Y12C130012). We also thank Prof. Jianmin Wan (Chinese Academy of Agricultural Sciences, China) for the gift of plasmid PAN580–GFP, and Dr. Wenzhen Liu (China National Rice Research Institute, China) for the pCAMBIA2300–35S vectors.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shaoqing Tang or Peisong Hu.

Additional information

Jian Song and Xiangjin Wei have contributed equally to this work.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 3103 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Song, J., Wei, X., Shao, G. et al. The rice nuclear gene WLP1 encoding a chloroplast ribosome L13 protein is needed for chloroplast development in rice grown under low temperature conditions. Plant Mol Biol 84, 301–314 (2014). https://doi.org/10.1007/s11103-013-0134-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-013-0134-0

Keywords

Navigation