Skip to main content

Advertisement

Log in

Domestication evolution, genetics and genomics in wheat

  • Review
  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Domestication of plants and animals is the major factor underlying human civilization and is a gigantic evolutionary experiment of adaptation and speciation, generating incipient species. Wheat is one of the most important grain crops in the world, and consists mainly of two types: the hexaploid bread wheat (Triticum aestivum) accounting for about 95% of world wheat production, and the tetraploid durum wheat (T. durum) accounting for the other 5%. In this review, we summarize and discuss research on wheat domestication, mainly focusing on recent findings in genetics and genomics studies. T. aestivum originated from a cross between domesticated emmer wheat T. dicoccum and the goat grass Aegilops tauschii, most probably in the south and west of the Caspian Sea about 9,000 years ago. Wild emmer wheat has the same genome formula as durum wheat and has contributed two genomes to bread wheat, and is central to wheat domestication. Domestication has genetically not only transformed the brittle rachis, tenacious glume and non-free threshability, but also modified yield and yield components in wheat. Wheat domestication involves a limited number of chromosome regions, or domestication syndrome factors, though many relevant quantitative trait loci have been detected. On completion of the genome sequencing of diploid wild wheat (T. urartu or Ae. tauschii), domestication syndrome factors and other relevant genes could be isolated, and effects of wheat domestication could be determined. The achievements of domestication genetics and robust research programs in Triticeae genomics are of greatly help in conservation and exploitation of wheat germplasm and genetic improvement of wheat cultivars.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Mya:

Million years ago

BP:

Years before present

SSR:

Simple sequence repeat

Br:

Brittle rachis

Tg:

Tenacious glume

Ppd:

Photoperiod response

QTL:

Quantitative trait locus

DSF:

Domestication syndrome factor

AFLP:

Amplified fragment length polymorphism

References

  • Aaronsohn A (1910) Agricultural and botanical explorations in Palestine. Bureau of Plant Industry Bull 80, USDA, No 180

  • Aaronsohn A, Schweinfurth G (1906) Die Auffindung des wilden Emmers (Triticum dicoccum) in Nordpalästina. Altneuland Monatsschrift für die irtschaft. Erschliessung Palästinas 7–8:213–220

    Google Scholar 

  • Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Deal KR, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo H, Huo N, Lazo GR, Luo MC, Ma YQ, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2010) Nucleotide diversity maps reveal variation in diversity among wheat genomes and chromosomes. BMC Genomics 11:702

    Article  PubMed  CAS  Google Scholar 

  • Allaby RG (2010) Integrating the processes in the evolutionary system of domestication. J Exp Bot 61:935–944

    Article  PubMed  CAS  Google Scholar 

  • Araki E, Miura H, Sawada S (1999) Identification of genetic loci affecting amylose content and agronomic traits on chromosome 4A of wheat. Theor Appl Genet 98:977–984

    Article  CAS  Google Scholar 

  • Balter M (2007) Seeking agriculture’s ancient roots. Science 316:1830–1835

    Article  PubMed  CAS  Google Scholar 

  • Belyayev A, Kalendar R, Brodsky L, Nevo E, Schulman AH, Raskina O (2010) Transposable elements in a marginal plant population: temporal fluctuations provide new insights into genome evolution of wild diploid wheat. Mobile DNA 1:6

    Article  PubMed  CAS  Google Scholar 

  • Bennett MD, Leitch IJ (2010) Plant DNA C-values database (release 5.0, Dec. 2010). http://www.kew.org/cvalues/

  • Börner A, Korzun V, Worland AJ (1998) Comparative genetic mapping of loci affecting plant height and development in cereals. Euphytica 100:245–248

    Article  Google Scholar 

  • Brown AHD (2010) Variation under domestication in plants: 1859 and today. Phil Trans R Soc B 365:2523–2530

    Article  PubMed  Google Scholar 

  • Buckler ES, Thornsberry JM, Kresovich S (2001) Molecular diversity, structure and domestication of grasses. Genet Res 77:213–218

    Article  PubMed  CAS  Google Scholar 

  • Cakmak IA, Torun E, Millet E, Feldman M, Fahima T, Korol AB, Nervo E, Braun HJ, Özkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    Article  CAS  Google Scholar 

  • Campbell B, Baenziger PS, Gill KS, Eskridge KM, Budak H, Erayman M, Dweikat I, Yen Y (2003) Identification of QTLs and environmental interactions associated with agronomic traits on chromosome 3A of wheat. Crop Sci 43:1493–1505

    Article  CAS  Google Scholar 

  • Cao W, Scoles GJ, Hucl P (1997) The genetics of rachis fragility and glume tenacity in semi-wild wheat. Euphytica 94:119–124

    Article  Google Scholar 

  • Carver BF (2009) Wheat science and trade. Wiley, Danvers, p 569

    Book  Google Scholar 

  • Chao S, Dubcovsky J, Dvorak J, Luo MC, Baenziger SP, Matnyazov R, Clark DR, Talbert LE, Anderson JA, Dreisigacker S, Glover K, Chen J, Campbell K, Bruckner PL, Rudd JC, Haley SD, Carver BF, Perry S, Sorrells ME, Akhunov ED (2010) Population- and genome-specific patterns of linkage disequilibrium and SNP variation in spring and winter wheat (Triticum aestivum L.). BMC Genomics 11:727

    Article  PubMed  CAS  Google Scholar 

  • Chen QF, Yen C, Yang JL (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Res Crop Evol 45:21–25

    Google Scholar 

  • Cockram J, Jones H, Leigh FJ, O’Sullivan D, Powell W, Laurie DA, Greenland AJ (2007) Control of flowering time in temperate cereals: genes, domestication, and sustainable productivity. J Exper Bot 58:1231–1244

    Article  CAS  Google Scholar 

  • Cockram J, Norris C, O’Sullivan DM (2009) PCR-based markers diagnostic for Spring and Winter seasonal growth habit in barley. Crop Sci 49:403–410

    Article  CAS  Google Scholar 

  • Damania AB (1998) Diversity of major cultivated plants domesticated in the Near East. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Proceedings of the Harlan Symposium. ICARDA, Aleppo, pp 51–64

    Google Scholar 

  • Darwin C (1905) The variation of animals and plants under domestication. John Murray, London (popular edition in two volumes) 566 p

    Google Scholar 

  • Doebley J (1989) Isozymic evidence and the evolution of crop plants. In: Soltis D, Soltis P (eds) Isozymes in Plant Biology. Dioscorides Press, Portland, pp 165–191

    Chapter  Google Scholar 

  • Doebley JF, Gaut BS, Smith BD (2006) The molecular genetics of crop domestication. Cell 127:1309–1321

    Article  PubMed  CAS  Google Scholar 

  • Dorofeev VF, Filatenko AA, Migushova EF, Udaczin RA, Jakubziner MM (1979) Wheat. In: Dorofeev VF, Korovina ON (eds) Flora of Cultivated Plants, vol 1. Leningrad, Russia

    Google Scholar 

  • Dubcovsky J, Dvorak J (2007) Genome plasticity a key factor in the success of polyploid wheat under domestication. Science 316:1862–1866

    Article  PubMed  CAS  Google Scholar 

  • Dunford RP, Griffiths S, Christodoulou V, Laurie DA (2005) Characterisation of a barley (Hordeum vulgare L.) homologue of the Arabidopsis flowering time regulator GIGANTEA. Theor Appl Genet 110:925–931

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J (2009) Triticeae genome structure and evolution. In: Feuiller C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 685–711

    Google Scholar 

  • Dvorak J, Akhunov E (2005) Tempos of gene locus deletions and duplications and their relationship to recombination rate during diploid and polyploid evolution in the Aegilops-Triticum alliance. Genetics 17:323–332

    Article  CAS  Google Scholar 

  • Dvorak J, Diterlizzi P, Zhang HB, Resta P (1993) The evolution of polyploidy wheats: identification of the A genome donor species. Genome 36:21–31

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Yang ZL (1998) Genetic evidence on the origin of Triticum aestivum L. In: Damania AB, Valkoun J, Willcox G, Qualset CO (eds) The origins of agriculture and crop domestication. Proceedings of the Harlan symposium. ICARDA, Aleppo, pp 235–251

  • Dvorak J, Akhunov ED, Akhunov AR, Deal KR, Luo MC (2006) Molecular characterization of a diagnostic DNA marker for domesticated tetraploid wheat provides evidence for gene flow from wild tetraploid wheat to hexaploid wheat. Mol Biol Evol 23:1386–1396

    Article  PubMed  CAS  Google Scholar 

  • Dvorak J, Luo MC, Akhunov ED (2011) N.I. Vavilov’s theory of centers of diversity in light of current understanding of wheat diversity, domestication and evolution. Czech J Genet Plant Breed (in press)

  • Elias EM, Steiger KD, Cantrell RG (1996) Evaluation of lines derived from wild emmer chromosome substitutions II. Agronomic traits. Crop Sci 36:228–233

    Article  Google Scholar 

  • Faris J, Gill BS (2002) Genomic targeting and high resolution mapping of the domestication gene Q in wheat. Genome 45:706–718

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill B (2005) The wheat super domestication gene Q. Front Wheat Biosci 100:129–148

    Google Scholar 

  • Faure S, Higgins J, Turner A, Laurie DA (2007) The FLOWERING LOCUS T-like gene family in barley (Hordeum vulgare). Genetics 176:599–609

    Article  PubMed  CAS  Google Scholar 

  • Feldman M, Kislev ME (2007) Domestication of emmer wheat and evolution of free-threshing tetraploid wheat. Israel J Plant Sci 55:207–221

    Article  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Feldman M, Lupton FGH, Miller TE (1995) Wheats. Triticum spp. (Gramineae- Triticinae). In: Smartt J, Simmonds NW (eds) Evolution of crop plants. Longman Scientific & Technical Press, London, pp 84–192

    Google Scholar 

  • Feuillet C, Eversole K (2007) Physical mapping of the wheat genome: a coordinated effort to lay the foundation for genome sequencing and develop tools for breeders. Isr J Plant Sci 55:307–313

    Article  Google Scholar 

  • Feuillet C, Muehlbauer GJ (2009) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin

  • Fleury D, Luo MC, Dvorak J, Ramsay L, Gill BS, Anderson OD, You FM, Shoaei Z, Deal KR, Langridge P (2010) Physical mapping of a large plant genome using global high-information-content-fingerprinting: the distal region of the wheat ancestor Aegilops tauschii chromosome 3DS. BMC Genomics 11:382

    Article  PubMed  CAS  Google Scholar 

  • Frary A, Doğanlar S (2003) Comparative genetics of crop plant domestication and evolution. Turk J Agric Forest 27:59–69

    CAS  Google Scholar 

  • Fu YB, Somers DJ (2009) Genome-wide reduction of genetic diversity in wheat breeding. Crop Sci 49:61–168

    Google Scholar 

  • Fuller DQ (2007) Contrasting patterns in crop domestication and domestication rates: recent archaeobotanical insights from the Old World. Ann Bot 100:903–924

    Article  PubMed  Google Scholar 

  • Fuller DQ, Allaby RG, Stevens C (2010) Domestication as innovation: the entanglement of techniques, technology and chance in the domestication of cereal crops. World Archaeol 42:13–28

    Article  Google Scholar 

  • Gandilian PA (1972) On wild growing Triticum species of Armenian SSR. Bot Zhur 57:173–181

    Google Scholar 

  • Gegas VC, Nazari A, Griffiths S, Simmonds J, Fish L, Orford S, Sayers L, Doonan JH, Snape JW (2010) A genetic framework for grain size and shape variation in wheat. Plant Cell 22:1046–1056

    Article  PubMed  CAS  Google Scholar 

  • Gepts P (2004) Crop domestication as a long-term selection experiment. Plant Breed Rev 24:1–44

    Google Scholar 

  • Giles RJ, Brown TA (2006) GluDy allele variations in Aegilops tauschii and Triticum aestivum: implications for the origins of hexaploid wheats. Theor Appl Genet 112:1563–1572

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko EV (1996a) Identification and high-density mapping of gene-rich regions in chromo some group 5 of wheat. Genetics 143:1001–1012

    PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996b) Identification and high-density mapping of gene-rich regions in chromosome 1 of wheat. Genetics 144:1883–1891

    PubMed  CAS  Google Scholar 

  • Gill BS, Friebe B, Raupp WJ, Wilson DL, Cox TS, Sears RG, Brown-Guedira GL, Fritz AK (2006) Wheat genetics resource center: the first 25 years. Adv Agron 89:73–136

    Article  Google Scholar 

  • Gill BS, Li W, Sood S, Kuraparthy V, Friebe Simons KJ, Zhang Z, Faris JD (2007) Genetics and genomics of wheat domestication-driven evolution. Isr J Plant Sci 55:223–229

    Article  Google Scholar 

  • Griffiths S, Dunford RP, Coupland G, Laurie DA (2003) The evolution of CONSTANS-like gene families in barley, rice and Arabidopsis. Plant Physiol 131:1855–1867

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Mir RR, Mohan A, Kumar J (2008) Wheat genomics: present status and future prospects. Intl J Plant Genomics, vol 2008, Article ID 896451, 36 pages. doi:10.1155/2008/896451

  • Gustafson P, Raskina O, Ma X, Nevo E (2009) Wheat evolution, domestication, and improvement. In: Carver BF (ed) Wheat: science and trade. Wiley, Danvers, pp 5–30

    Google Scholar 

  • Hancock JF (2005) Contributions of domesticated plant studies to our understanding of plant evolution. Ann Bot 96:953–963

    Article  PubMed  CAS  Google Scholar 

  • Harlan JR (1992) Crop and man. American Society of Agronomy, Crop Science Society of America, Madison

    Google Scholar 

  • Haudry A, Cenci A, Ravel C, Bataillon T, Brunel D, Poncet C, Hochu I, Poirier S, Santoni S, Gle′min S, David J (2007) Grinding up wheat: a massive loss of nucleotide diversity since domestication. Mol Biol Evol 24:1506–1517

    Article  PubMed  CAS  Google Scholar 

  • Hedden P (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  PubMed  CAS  Google Scholar 

  • Heun M, Schäfer-Pregl R, Klawan D, Castagna R, Accerbi M, Borghi B, Salamini F (1997) Site of einkorn wheat domestication identified by DNA fingerprinting. Science 278:1312–1314

    Article  CAS  Google Scholar 

  • Hillman G, Davies S (1990) Measured domestication rates in wild wheats and barley under primitive cultivation, and their archaeological implications. J World Prehistory 4:157–222

    Article  Google Scholar 

  • Honne BI, Heun M (2009) On the domestication genetics of self-fertilizing plants. Veget Hist Archaeobot 18:269–272

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill B, Haselkorn R, Gornicki P (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polypoid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Inda LA, Segarra-Moragues José Gabriel, Müller Jochen, Peterson Paul M, Catalán Pilar (2008) Dated historical biogeography of the temperate LoHinae (Poaceae, Pooideae) grasses in the northern and southern hemispheres. Mol Phylogenet Evol 46:932–957

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Johnson BL (1975) Identification of the apparent B-genome donor of wheat. Can J Genet Cytol 17:21–39

    Google Scholar 

  • Johnson RC (2008) Gene banks pay big dividends to agriculture, the environment, and human welfare. PLoS Biol 6(6):e148. doi:10.1371/journal.pbio.0060148

  • Johnson BL, Dhaliwal HS (1976) Reproductive isolation of Triticum boeticum and Triticum urartu and the origin of the tetraploid wheats. Am J Bot 63:1088–1094

    Article  Google Scholar 

  • Kashkush K (2007) Genome-wide impact of transcriptional activation of long terminal repeat retrotransposons on the expression of adjacent host genes. Isr J Plant Sci 55:241–250

    Article  CAS  Google Scholar 

  • Kashkush K, Feldman M, Levy AA (2002) Gene loss, silencing and activation in a newly synthesized wheat allotetraploid. Genetics 160:1651–1656

    PubMed  CAS  Google Scholar 

  • Kato K, Miura H, Akiyama M, Kuroshima M, Sawada S (1998) RFLP mapping of the three major genes, Vrn1, Q and B1, on the long arm of chromosome 5A of wheat. Euphytica 101:91–95

    Article  CAS  Google Scholar 

  • Kato K, Miura H, Sawada S (2000) Mapping QTLs controlling grain yield and its components on chromosome 5A of wheat. Theor Appl Genet 101:933–943

    Google Scholar 

  • Kato K, Sonokawa R, Miura H, Sawada S (2003) Dwarfing effect associated with the threshability gene Q on wheat chromosome 5A. Plant Breed 122:489–492

    Article  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Kerber ER (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:253–255

    Article  PubMed  CAS  Google Scholar 

  • Kerber RE, Rowland GG (1974) Origin of the threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hortic (Tokyo) 19:13–14

    Google Scholar 

  • Kilian B, Özkan H, Walther A, Kohl J, Dagan T, Salamini F, Martin W (2007) Molecular diversity at 18 loci in 321 wild and 92 domesticate lines reveal no reduction of nucleotide diversity during Triticum monococcum (einkorn) domestication: Implications for the origin of agriculture. Mol Biol Evol 24:2657–2668

    Article  PubMed  CAS  Google Scholar 

  • Kilian B, Özkan H, Pozzi C, Salamini F (2009) Domestication of the Triticeae in the Fertile Crescent. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 81–119

    Google Scholar 

  • Kislev ME (1980) Triticum parvicoccum sp. nov., the oldest naked wheat. Israel J Bot 28:95–107

    Google Scholar 

  • Kislev ME, Nadel D, Carmi I (1992) Epipalaeolithic (19,000 BP) cereal and fruit diet at Ohalo II, Sea of Galilee, Israel. Rev Palaeobot Palynol 73:161–166

    Article  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312:1392–1396

    Article  PubMed  CAS  Google Scholar 

  • Korol A, Mester D, Frenkel Z, Ronin Y (2009) Methods of genetic analysis in the Triticeae. In: Feuillett C, Muelbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 163–199

    Google Scholar 

  • Kuckuck H (1959) Neuere Arbeiten zur Entstehung der hexaploiden Kulturweizen. Z. Pflanzenzüchtg. 41:205–226

    Google Scholar 

  • Kunzel G, Korzum L, Meister A (2000) Cytologically integrated physical restriction fragment length polymorphism maps for the barley genome based on translocation breakpoints. Genetics 154:397–412

    PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Chunneja P, Dhaliwal HS, Gill BS (2007) Identification and mapping of tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114:285–294

    Article  PubMed  CAS  Google Scholar 

  • Kuraparthy V, Sood S, Gill BS (2008) Genomic targeting and mapping of tiller inhibition gene (tin3) of wheat using ESTs and synteny with rice. Funct Integr Genomics 8:33–42

    Article  PubMed  CAS  Google Scholar 

  • Levy AA, Feldman M (2004) Genetic and epigenetic reprogramming of the wheat genome upon allopolyploidization. Biol J Linn Soc 82:607–613

    Article  Google Scholar 

  • Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Func Integr Genomics 6:300–309

    Article  CAS  Google Scholar 

  • Li YC, Fahima T, Korol AB, Peng J, Röder MS, Kirzhner VM, Beiles A, Nevo E (2000) Microsatellite diversity correlated with ecological-edaphic and genetic factors in three microsites of wild emmer wheat in North Israel. Mol Biol Evol 17:851–862

    PubMed  CAS  Google Scholar 

  • Li YC, Korol AB, Fahima T, Beiles A, Nevo E (2002) Microsatellites: genomic distribution, putative functions and mutational mechanisms: a review. Mol Ecol 11:2453–2465

    Article  PubMed  CAS  Google Scholar 

  • Li YC, Fahima T, Röder MS, Kirzhner VM, Beiles A, Korol AB, Nevo E (2003) Genetic effects on microsatellite diversity in wild emmer wheat (Triticum dicoccoides) at the Yehudiyya microsite, Israel. Heredity 90:156–160

    Google Scholar 

  • Li YC, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function and evolution. Mol Biol Evol 21:991–1007

    Article  PubMed  CAS  Google Scholar 

  • Liu YG, Tsunewaki K (1991) Restriction fragment length polymorphism analysis of wheat. II. Linkage maps of the RFLP sites in common wheat. Jpn J Genet 66:617–633

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Yang ZL, Dvorak J (2000) The Q locus of Iranian and European spelt wheat. Theor Appl Genet 100:602–606

    CAS  Google Scholar 

  • Luo MC, Yang ZL, You FM, Kawahara T, Waines JG, Dvorak J (2007) The structure of wild and domesticated emmer wheat populations, gene flow between them, and the site of emmer domestication. Theor Appl Genet 114:947–959

    Article  PubMed  Google Scholar 

  • Luo MC, Deal KR, Akhunov ED, Akhunova AR, Anderson OD, Anderson JA, Blake N, Clegg MT, Coleman-Derr D, Conley EJ, Crossman CC, Dubcovsky J, Gill BS, Gu YQ, Hadam J, Heo HY, Huo N, Lazo G, Ma Y, Matthews DE, McGuire PE, Morrell PL, Qualset CO, Renfro J, Tabanao D, Talbert LE, Tian C, Toleno DM, Warburton ML, You FM, Zhang W, Dvorak J (2009) Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc Natl Acad Sci USA 106:15780–15785

    Article  PubMed  CAS  Google Scholar 

  • Luo MC, Ma Y, You FM, Anderson OD, Kopecký D, Šimková H, Šafář J, Doležel J, Gill BS, McGuire PE, Dvorak J (2010) Feasibility of physical map construction from fingerprinted bacterial artificial chromosome libraries of polyploid plant species. BMC Genomics 11:122

    Article  PubMed  CAS  Google Scholar 

  • Matsuoka Y, Nasuda S (2004) Durum wheat as a candidate for the unknown female progenitor of bread wheat: an empirical study with a highly fertile F1 hybrid with Aegilops tauschii Coss. Theor Appl Genet 109:1710–1717

    Article  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37(81–89):107–116

    Google Scholar 

  • McKey J (1966) Species relationships in Triticum. Hereditas 2:237–276

    Google Scholar 

  • Mori N, Ishii T, Ishido T, Hirosawa S, Watatani H, Kawahara T, Nesbitt M, Belay G, Takumi S, Ogihara Y, Nakamura C (2003) Origin of domesticated emmer and common wheat inferred from chloroplast DNA fingerprinting. 10th international wheat genetics symposium. Paestum, pp 25–28

  • Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48:469–482

    PubMed  CAS  Google Scholar 

  • Nalam V, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum). Theor Appl Genet 112:373–381

    Article  PubMed  CAS  Google Scholar 

  • Nalam V, Vales MI, Watson CJW, Johnson EB, Riera-Lizarazu O (2007) Map based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor Appl Genet 116:135–145

    Article  PubMed  Google Scholar 

  • Nesbitt M, Samuel D (1996) From stable crop to extinction? The archaeology and history of the hulled wheats. In: Padulosi S, Hammer K, Heller J (eds) hulled wheats. International Plant Genetic Resources Institute, Rome, pp 41–100

    Google Scholar 

  • Nevo E (2004) Genomic diversity in nature and domestication. In: Henry R (ed) Diversity and evolution of plants. Genotypic and phenotypic variation in higher plants. CABI Publishing CAB International, Wallingford, pp 287–315

    Google Scholar 

  • Nevo E (2007) Evolution of wild wheat and barley and crop improvement: studies at the Institute of Evolution. Isr J Plant Sci 55:251–263

    Article  Google Scholar 

  • Nevo E (2009) Ecological genomics of natural plant populations: the Israeli perspective. In: Somers DJ, Langridge P, Gustafson JP (eds) Methods in molecular biology, plant genomics, vol 513. Human Press, A part of Springer Science + Business Media, pp 321–344

  • Nevo E (2011) Triticum. In: Kole C (ed) Wild crop relatives: genomic and breeding resources, cereals. Springer, Berlin, pp 407–456. doi:10.1007/978-3-642-14228-4_10

    Chapter  Google Scholar 

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey: structure, evolution and application in breeding. Theor Appl Genet 77:421–455

    Article  Google Scholar 

  • Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environment 33:670–685. doi:10.1111/j.1365-3040.2009.02107.x

    Article  CAS  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of Wild Emmer and Wheat Improvement: Population Genetics, Genetic Resources, and Genome Organization of Wheat’s Progenitor, Triticum dicoccoides. Springer, Berlin 364

    Google Scholar 

  • Otto SP, Barton NH (1997) The evolution of recombination: removing the limits to natural selection. Genetics 147:879–906

    PubMed  CAS  Google Scholar 

  • Özkan H, Brandolini A, Schaefer-Pregl R, Salamini F (2002) AFLP analysis of a collection of tetraploid wheats indicates the origin of emmer and hard wheat domestication in southeast Turkey. Mol Biol Evol 19:1797–1801

    PubMed  Google Scholar 

  • Özkan H, Brandolini A, Pozzi C, Effgen S, Wunder J, Salamini F (2005) A reconsideration of the domestication geography of tetraploid wheats. Theor Appl Genet 110:1052–1060

    Article  PubMed  Google Scholar 

  • Özkan H, Willcox G, Graner A, Salamini F, Kilian B (2010) Geographic distribution and domestication of wild emmer wheat (Triticum dicoccoides). Genet Resour Crop Evol 58:11–53. doi:10.1007/s10722-010-9581-5

    Article  Google Scholar 

  • Parsons P (2005) Environments and evolution: interactions between stress, resource inadequacy and energetic efficiency. Biol Rev 80:589–610

    Article  PubMed  Google Scholar 

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Paux E, Sourdille P (2009) A toolbox for Triticeae genomics. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 255–283

    Google Scholar 

  • Paux E, Sourdille P, Salse J, Saintenac C, Choulet F, Leroy P, Korol A, Michalak M, Kianian S, Spielmeyer W, Lagudah E, Somers D, Kilian A, Alaux M, Vautrin S, Bergès H, Eversole K, Appels R, Safar J, Simkova H, Dolezel J, Bernard M, Feuillet C (2008) Physical map of the 1-Gigabase bread wheat chromosome 3B. Science 322:101–104

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Zadeh H, Lazo GR, Gustafson JP, Chao S et al (2004) Chromosome bin map of expressed sequence tags in homoeologous group 1 of hexaploid wheat and homoeology with rice and Arabidopsis. Genetics 168:609–623

    Article  PubMed  CAS  Google Scholar 

  • Perrino P, Laghetti G, D’Antuono LF, Al Ajlouni M, Kanbertay M, Szabo AT, Hammer K (1996) Ecogeographical distribution of hulled wheat species. In: Padulosi S, Hammer K, Heller J (eds) Hulled wheats. International Plant Genetic Resources Institute, Rome, pp 102–118

    Google Scholar 

  • Piperno DR, Weiss E, Holst I, Nadel D (2004) Processing of wild cereal grains in the Upper Palaeolithic revealed by starch grain analysis. Nature 430:670–673

    Article  PubMed  CAS  Google Scholar 

  • Rice WR (2002) Experimental tests of the adaptive significance of sexual recombination. Nat Rev Genet 3:241–251

    Article  PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH et al (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rong J, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Ross-Ibarra J, Morrell PL, Gaut BS (2007) Plant domestication, a unique opportunity to identify the genetic basis of adaptation. Proc Natl Acad Sci USA 104:8641–8648

    Article  PubMed  CAS  Google Scholar 

  • Rossini L, Vecchietti A, Nicoloso, Stein N, Franzago S, Salamini F, Pozzi C (2006) Candidate genes for barley mutants involved in plant architecture: an in silico approach. Theor Appl Genet 112:1073–1085

    Article  PubMed  CAS  Google Scholar 

  • Sabot F, Schulman AH (2009) Genomics of transposable elements in the Triticeae. In: Feuillett C, Muelbauer GJ (eds) Genetics and genomics of the triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 387–405

    Google Scholar 

  • Salamini F, Özkan H, Brandolini A, Schäfer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the Near East. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Schuster SC (2008) Next-generation sequencing transforms today’s biology. Nat Methods 5:16–18

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Res Bull Missouri Agric Exp Stn 572:1–57

    Google Scholar 

  • Shah M, Gill KS, Bezinger PS, Yen Y, Kaeppler SM, Ariyarathne HM (1999) Molecular mapping of loci for agronomic traits on chromosome 3A of bread wheat. Crop Sci 39:1728–1732

    Article  CAS  Google Scholar 

  • Sharma H, Waynes J (1980) Inheritance of tough rachis in crosses of Triticum monococcum and Triticum boeoticum. J Hered 7:214–216

    Google Scholar 

  • Simons K, Fellers JP, Trik HN, Zhang Z, Tai YS, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Snape J, Law W, Parker CN, Worland BB, Worland AJ (1985) Genetical analysis of chromosome 5A of wheat and its influence on important agronomic characters. Theor Appl Genet 71:518–526

    Article  Google Scholar 

  • Sood S, Kuraparthy V, Bai G, Gill BS (2009) The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119:341–351

    Article  PubMed  Google Scholar 

  • Spielmeyer W, Richards RA (2004) Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet 109:1303–1310

    Article  PubMed  CAS  Google Scholar 

  • Stein N (2009) Physical mapping in the Triticeae. In: Feuillet C, Muehlbauer GJ (eds) Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. Springer, Berlin, pp 317–335

    Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Tanno K, Willcox G (2006) How fast was wild wheat domesticated? Science 311:1886

    Article  PubMed  CAS  Google Scholar 

  • Thuillet AC, Bataillon T, Poirier S, Santoni S, David JL (2005) Estimation of long-term effective population sizes through the history of Durum wheat using microsatellite data. Genetics 169:1589–1599

    Article  PubMed  CAS  Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfield A, Fahima T, Blechl A, Dubcovsky J (2006) A NAC gene regulating senescence improves grain protein, zinc and iron content in wheat. Science 413:1298–1301

    Article  CAS  Google Scholar 

  • van Zeist W, Bakker-Heeres JAH (1985) Archaeological studies in the Levant 1. Neolithic sites in the Damascus Basin: Aswad, Ghoraife, Ramad. Palaeohistoria 24:165–256

    Google Scholar 

  • Villareal R, Mujeeb-Kazi A, Rajaram S (1996) Inherintance of threshability in synthetic hexaploid by T. aestivum crosses. Plant Breed 115:407–409

    Article  Google Scholar 

  • Watanabe N (2005) The occurrence and inheritance of a brittle rachis phenotype in Italian durum wheat cultivars. Euphytica 142:247–251

    Article  Google Scholar 

  • Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Watanabe N, Sogiyama K, Yamagashi Y, Skata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185

    Article  Google Scholar 

  • Willcox G (2004) Measuring grain size and identifying Near Eastern cereal domestication: evidence from the Euphrates valley. J Archaeol Sci 31:145–150

    Article  Google Scholar 

  • Willcox G, Fornite S, Herveaux L (2008) Early Holocene cultivation before domestication in Northern Syria. Veget Hist Archaeobot 17:313–325

    Article  Google Scholar 

  • Xie W, Nevo E (2008) Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164:603–614

    Article  Google Scholar 

  • Yan L, Loukoianov A, Tranquilli G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford University Press, Oxford

    Google Scholar 

Download references

Acknowledgments

This work was supported in part by the China National Science Foundation Grant Nos. 31030055 & 30870233, Chinese Academy of Sciences under the Important Directional Program of Knowledge Innovation Project Grant No. KSCX2-YW-Z-0722, the CAS Strategic Priority Research Program Grant No. XDA05130403, the “973” National Key Basic Research Program Grant No. 2009CB118300, and the Ancell Teicher Research Foundation for Genetics and Molecular Evolution.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junhua H. Peng.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Peng, J.H., Sun, D. & Nevo, E. Domestication evolution, genetics and genomics in wheat. Mol Breeding 28, 281–301 (2011). https://doi.org/10.1007/s11032-011-9608-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9608-4

Keywords

Navigation