Skip to main content
Log in

Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

During the domestication of bread wheat (Triticum aestivum L.), evolutionary modifications that took place in seed dispersal mechanisms enhanced its suitability for agricultural production. One of these modifications involved the evolution of the free-threshing or hulless characteristic. In this study, we studied quantitative trait loci (QTL) affecting components of the free-threshing habit (threshability and glume tenacity) on chromosome 2D in a recombinant inbred line (RIL) population developed by the International Triticeae Mapping Initiative (ITMI) as well as the tenacious glumes 1 (Tg1) gene in F2 progeny (CS/CS2D F2) of a cross between Chinese Spring and the 2D2 substitution line [Chinese Spring (Ae. tauschii 2D)]. In the ITMI population, two QTL affected threshability (QFt.orst-2D.1 and QFt.orst-2D.2) and their location coincided with QTL affecting glume tenacity (QGt.orst-2D.1 and QGt.orst-2D.2). In the CS/CS2D F2 population, the location of QTL that affected glume tenacity (QGt.orst-2D.1), the size of a glume base scar after detachment (QGba.orst-2D), and Tg1 (12-cM interval between Xwmc112 and Xbarc168) also coincided. Map comparisons suggest that QFt-orst-2D.1, QGt.orst-2D.1, and QGba.orst-2D correspond to Tg1 whereas QFt.orst-2D.2 and QGt.orst-2D.2 appear to represent separate loci. The observation of coincident QTL for threshability and glume tenacity suggests that threshability is a function of glume adherence. In addition, the observation of the coincident locations of Tg1 and QTL for the force required to detach a glume and the size of a glume base scar after detachment suggests that Tg1’s effect on both glume tenacity and threshability resides on its ability to alter the level of physical attachment of glumes to the rachilla of a spikelet.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abramoff MD, Magelhaes PJ, Ram SJ (2004) Image processing with imageJ. Biophotonics Int 11:36–42

    Google Scholar 

  • Basten CJ, Weir BS, Zeng ZB (1994) Zmap–a QTL cartographer. In: Smith C, Gavora JS, Chesnais BBJ, Fairfull W, Gibson JP, Kennedy BW, Burnside EB (eds) Proceedings of the 5th world congress on genetics applied to livestock production: computing strategies and software, vol 22. Guelph, ON, Canada, pp 65–66

  • Basten CJ, Weir BS, Zeng ZB (1999) QTL Cartographer Version 1.13, a reference manual and tutorial for QTL mapping. http://www.statgen.ncsu.edu/qtlcart/cartographer.html

  • Chen Q-F, Yen C, Yang J-L (1999) Chromosome location of the gene for the hulled character in the Tibetan weedrace of common wheat. Genet Resour Crop Evol 46:543–546

    Article  Google Scholar 

  • Dorofeev VF, Navruzbekov NA (1982) Genetic aspects of easy threshing and rachis strength in naked-grained wheats. Doklady Vsesoyuznoi Ordena Lenina i Ordena Trudovogo Krasnogo Znameni Akademii Sel’skokhozyaistvennykh Nauk Imeni V.I. Lenina 2:3–6

    Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating gene-rich regions of the wheat genome. Nucleic Acid Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bonjean AP, Angus JW (eds) The world wheat book. Lavosier, Paris, pp 3–58

    Google Scholar 

  • Gill BS, Friebe B, Endo TR (1991) Standard karyotype and nomenclature system for description of chromosome bands and aberrations in wheat (Triticum aestivum). Genome 34:830–839

    Google Scholar 

  • Haley CS, Knott SA (1992) A simple method for mapping quantitative trait loci in line crosses using flanking markers. Heredity 69:315–324

    PubMed  CAS  Google Scholar 

  • Huang S, Sirikhachornkit A, Faris J, Gill BS, Haselkorn R, Gornicki P (2002) Phylogenetic analysis of the acetyl-CoA carboxylase and 3-phosphoglycerate kinase loci in wheat and other grasses. Plant Mol Biol 48:805–820

    Article  PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting the free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kabarity A (1966) On the origin of the new cultivated wheat II. Cytogenetical studies on the karyotypes of some Triticum macha varieties. Beitr Biol Pflanzen 42:339–346

    Google Scholar 

  • Kerber RE, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber RE, Rowland GG (1974) Origin of the threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Kimber, G, Sears ER (1983) Assignment of genome symbols in Triticeae. In: Proceedings of the 6th international wheat genet symposium Kyoto, Japan, pp 1195–1196

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part I. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kuckuck H (1964) Experimentelle Untersuchungen zur Entstehung der Kulturweizen. Z Pflanzenzuchtg 51:97–140

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Leighty CE, Boshnakian S (1921) Genetic behavior of the spelt form in crosses between Triticum spelta and Triticum aestivum. J Agri Res 7:335–364

    Google Scholar 

  • Luo MC, Yang ZL, Dvorak J (2000) The Q locus of Iranian and European spelt wheat. Theor Appl Genet 100:602–606

    CAS  Google Scholar 

  • Mac Key J (1954) Neutron and X-ray experiments in wheat and a revision of speltoid problem. Hereditas 40:65–180

    Google Scholar 

  • Mac Key J (1966) Species relationships in Triticum. In: Proceedings of the 2nd international wheat genet symposium (Lund) 1963, Sweden. Hereditas (suppl) 2:237–276

  • Marino CL, Nelson JC, Lu YH, Sorrels ME, Leroy P, Lopes CR, Hart GE (1996) RFLP-based linkage maps of the homoeologous group 6 chromosomes of hexaploid wheat (Triticum aestivum L. em. Thell). Genome 39:359–366

    Article  CAS  PubMed  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–116

    Google Scholar 

  • Morrison LA (1994) Reevaluation of systematic relationships in Triticum L. and Aegilops L. based on comparative morphological and anatomical investigations of dispersal mechanisms. Ph.D. Thesis, Oregon State University

  • Muramatsu M (1963) Dosage effect of the spelta gene q of hexaploid wheat. Genetics 48:469–482

    PubMed  CAS  Google Scholar 

  • Muramatsu M (1986) The vulgare super gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41

    Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map-based analysis of genes affecting the brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381

    Article  PubMed  CAS  Google Scholar 

  • Nelson JC, Sorrells ME, Van Deynze AE, Lu YH, Atkinson M, Bernard M, Leroy P, Faris JD, Anderson JA (1995a) Molecular mapping of wheat: major genes and rearrangements in homoeologous groups 4, 5, and 7. Genetics 141:721–731

    PubMed  CAS  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995b) Molecular mapping of wheat homoeologous group 2. Genome 38:516–524

    CAS  PubMed  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Negre S, Bernard M, Leroy P (1995c) Molecular mapping of wheat homoeologous group 3. Genome 38:525–533

    CAS  PubMed  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Riera-Lizarazu O, Vales MI, Ananiev EV, Rines HW, Phillips RL (2000) Production and characterization of maize chromosome 9 radiation hybrids derived from an oat-maize addition line. Genetics 156:327–339

    PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • SAS Institute (2003) SAS user’s guide, version 9.1. SAS Institute Inc., Cary, NC, USA

  • Schröder E (1931) Anatomische Untersuchungen an den Spindeln der Triticum- und Aegilops-Arten zur Gewinnung neuer Gesichtspunkte für die Abstammung und Systematik der Triticum-Arten. Beih Bot Zentralbl 48:333–403

    Google Scholar 

  • Sears ER (1946) The sphaerococcum gene in wheat. Rec Genet Soc Am 15:65–66

    Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Columbia, Mo., University of Missouri, pp 3–58

  • Sears ER (1968) Relationships of chromosome 2A, 2B, and 2D with their rye homoeologue. In: Finlay KW, Shepherd KW (eds) Proceedings of the 3rd international wheat genet symposium, Canberra, Australia, pp 53–61

  • Simonetti MC, Bellomo MP, Laghetti G, Perrino P, Simeone R, Blanco A (1999) Quantitative trait loci influencing free-threshing habit in tetraploid wheats. Genet Res Crop Evol 46:267–271

    Article  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) A high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sood S, Kuraparthy V, Bai G, Dhaliwal HS, Gill BS (2007) Molecular mapping of soft glume (Sog) gene in diploid wheat. In: Abstracts of plant and animal genome XV, 13–17 January, San Diego, CA. P282

  • Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of Einkorn wheat: mapping of storage-protein and soft-glum genes and bread-making quality QTLs. Genet Res Camb 80:131–143

    CAS  Google Scholar 

  • Ternowskaya TK, Zhirov EG (1993) Bread wheat genome D. Genetic control of tender glume and depression at its base. Tsitologiya I Genetica 27:78–83

    Google Scholar 

  • Turner A, Beales J, Faure S, Dunford RP, Laurie DA (2005) The pseudo-response regulator Ppd-H1 provides adaptation to photoperiod in barley. Science 310:1031–1034

    Article  PubMed  CAS  Google Scholar 

  • Unrau J (1950) The use of monosomic and nullisomics in cytogenetic studies of common wheat. Sci Agr 30:66–89

    Google Scholar 

  • Van Deynze AE, Dubcovsky J, Gill KS, Nelson JC, Sorrels ME, Dvořák J, Gill BS, Lagudah ES, McCouch SR, Appels R (1995) Molecular-genetic maps for group 1 chromosomes of Triticeae species and their relation to chromosomes in rice and oat. Genome 38:45–59

    PubMed  CAS  Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Voorrips RE (2002) MapChart: software for the graphical presentation of linkage maps and QTLs. J Hered 93:77–78

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain color dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Watanabe N, Takesada N, Fujii Y, Martinek P (2005) Comparative mapping of genes for brittle rachis in Triticum and Aegilops. Czech J Genet Plant Breed 41:39–44

    Google Scholar 

  • Whittaker J, Thompson R, Visscher PM (1996) On the mapping of QTL by regression of phenotype on marker-type. Heredity 77:23–32

    Article  Google Scholar 

  • Zeng Z (1993) Theoretical basis for separation of multiple linked gene effects in mapping quantitative trait loci. Proc Natl Acad Sci USA 90:10972–10976

    Article  PubMed  CAS  Google Scholar 

  • Zeng Z (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank Tanya Filichkin for translating Russian papers and Dr. Jeff Leonard and Kelsey Allen for technical assistance. We would also like to thank Drs. C. Qualset, J. Dvorak and B.S. Gill for providing seed from various genetic stocks. Financial support from the Oregon Agricultural Experiment Station, the National Science Foundation Research for Undergraduates Program, and USDA-CSREES National Research Initiative Plant Genome Program (Award No. 2006-55606-16629) are greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar Riera-Lizarazu.

Additional information

Communicated by D.A. Hoisington.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nalam, V.J., Vales, M.I., Watson, C.J.W. et al. Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability, components of the free-threshing habit in common wheat (Triticum aestivum L.). Theor Appl Genet 116, 135–145 (2007). https://doi.org/10.1007/s00122-007-0653-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-007-0653-7

Keywords

Navigation