Skip to main content
Log in

The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Threshability is an important crop domestication trait. The wild wheat progenitors have tough glumes enveloping the floret that make spikes difficult to thresh, whereas cultivated wheats have soft glumes and are free-threshing. In hexaploid wheat, the glume tenacity gene Tg along with the major domestication locus Q control threshability. The Q gene was isolated recently and found to be a member of the AP2 class of transcription factors. However, only a few studies have reported on the tough glume trait. Here, we report comparative mapping of the soft glume (sog) gene of diploid Triticum monococcum L. and tenacious glume (Tg) gene of hexaploid T. aestivum L. using chromosome-specific SSR and RFLP markers. The sog gene was flanked by Xgwm71 and Xbcd120 in a 6.8 cM interval on chromosome 2AmS of T. monococcum whereas Tg was targeted to a 8.1 cM interval flanked by Xwmc503 and Xfba88 on chromosome 2DS of T. aestivum. Deletion bin mapping of the flanking markers assigned sog close to the centromere on 2AS, whereas Tg was mapped to the most distal region on 2DS. Both 2AS and 2DS maps were colinear ruling out the role of chromosome rearrangements for their non-syntenic positions. Therefore, sog and Tg are not true orthologues suggesting the possibility of a diverse origin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Ahn S, Anderson JA, Sorrells ME, Tanksley SD (1993) Homoeologous relationships of rice, wheat and maize chromosomes. Mol Gen Genet 241:483–490

    Article  PubMed  CAS  Google Scholar 

  • Akhunov ED, Goodyear AW, Geng S, Qi LL, Echalier B, Gill BS, Miftahudin, Gustafson JP, Lazo G, Chao S et al (2003) The organization and rate of evolution of wheat genomes are correlated with recombination rates along chromosome arms. Genome Res 13:753–763

    Article  PubMed  CAS  Google Scholar 

  • Chen QF, Yen C, Yang J-L (1999) Chromosome location of the hulled character in the Tibetian weedrace of common wheat. Genet Resour Crop Evol 46:543–546

    Article  Google Scholar 

  • Cheng Z-J, Murata M (2002) Loss of chromosomes 2R and 5RS in octaploid triticale selected for agronomic traits. Genes Genet Syst 77:23–29

    Article  PubMed  Google Scholar 

  • Conley EJ, Nduati V, Gonzalez-Hernandez L, Mesfin A, Trudeau-Spanjers M, Chao S, Lazo GR, Hummel DD, Anderson OD, Qi LL, Gill BS, Echalier B, Linkiewicz AM, Dubcovsky J et al (2004) A 2600-locus chromosome bin map of wheat homoeologous group-2 reveals interstitial gene-rich islands and colinearity with rice. Genetics 168:625–637

    Article  PubMed  CAS  Google Scholar 

  • Devos KM, Millan T, Gale MD (1993) Comparative RFLP maps of the homoeologous group-2 chromosomes of wheat, rye and barley. Theor Appl Genet 85(6–7):784–792

    CAS  Google Scholar 

  • Dhaliwal HS, Multani DS, Sharma SK, Singh M (1987) Induction of useful variability in T. monococcum L. Crop Improv 14(1):1–5

    Google Scholar 

  • Dorweiler J, Stec A, Kermicle J, Doebley J (1993) Teosinte glume architecture 1: a genetic locus controlling a key step in maize evolution. Science 262:233–235

    Article  PubMed  Google Scholar 

  • Dubcovsky J, Luo MC, Zhang GY, Bainsteitter R, Desai A, Kilian A, Kleinhofs A, Dvorak J (1996) Genetic map of diploid wheat T. monococcum L. and its comparison with maps of H. vulgare L. Genetics 143:983–999

    PubMed  CAS  Google Scholar 

  • Dvorak J (1980) Homoeology between Agropyron elongatum chromosomes and Triticum aestivum chromosomes. Can J Genet Cytol 22:237–259

    Google Scholar 

  • Dvorak J, Knott DR (1974) Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol 16:399–417

    Google Scholar 

  • Endo TR, Gill BS (1996) The deletion stocks of common wheat. J Hered 87:295–307

    CAS  Google Scholar 

  • Erayman M, Sandhu D, Sidhu D, Dilbirligi M, Baenziger PS, Gill KS (2004) Demarcating the gene-rich regions of the wheat genome. Nucl Acids Res 32:3546–3565

    Article  PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2002) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    Google Scholar 

  • Faris JD, Simons KJ, Zhang Z, Gill BS (2005) The wheat super domestication gene Q. Wheat Info Serv 100:129–148

    Google Scholar 

  • Feuillet C, Travella S, Stein N, Albar L, Nublat A, Keller B (2003) Map-based isolation of leaf rust disease resistance gene Lr10 from the hexaploid wheat (Triticum aestivum L.) genome. Proc Natl Acad Sci USA 100:15253–15258

    Article  PubMed  CAS  Google Scholar 

  • Feuillet C, Langridge P, Waugh R (2008) Cereal breeding takes a walk on wild side. Trends Genet 24:24–32

    Article  PubMed  CAS  Google Scholar 

  • Filatenko AA, Kurkiev UK (1975) Sinskaya wheat. Trudy po prikl botan genet i selectsii 54:239–241

    Google Scholar 

  • Friebe BR, Tuleen NA, Gill BS (1999) Development and identification of a complete set of Triticum aestivum-Aegilops geniculata chromosome addition lines. Genome 42:374–380

    Article  Google Scholar 

  • Gale MD, Devos KM (1998) Comparative genetics in the grasses. Proc Natl Acad Sci USA 95:1971–1974

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Boyko E (1996) Identification and high-density mapping of gene-rich regions in chromosome group 5 of wheat. Genetics 143:1001–1012

    PubMed  CAS  Google Scholar 

  • Gonchariov NP, Kondratenko EY, Kawahara T (2002) Inheritance of dense spike in diploid wheat and Aegilops squarossa. Hereditas 137:96–100

    Article  Google Scholar 

  • Gupta K, Balyan S, Edwards J, Issac P, Korzun V, Röder M, Gautier MF, Joudrier P, Schlatter R, Dubcovsky J, De La Pena C, Khairallah M, Penner G, Hayden J, Sharp P, Keller B, Wang C, Hardouin P, Jack P, Leroy P (2002) Genetic mapping of 66 new microsateliite (SSR) loci in bread wheat. Theor Appl Genet 105:413–422

    Article  PubMed  CAS  Google Scholar 

  • Guyomarc’h H, Sourdille P, Charmet G, Edwards J, Bernard M (2002a) Characterization of polymorphic microsatellite markers for Aegilops tauschii and transferability to the D-genome of bread wheat. Theor Appl Genet 104:1164–1172

    Article  PubMed  Google Scholar 

  • Guyomarc’h H, Sourdille P, Edwards J, Bernard M (2002b) Studies of the transferability of microsatellites derived from Triticum tauschii to hexaploid wheat and to diploid related species using amplification, hybridization and sequence comparisons. Theor Appl Genet 105:736–744

    Article  PubMed  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill BS, Haselkorn R, Gornicki P (2002) Genes encoding acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of the polyploid wheat. Proc Natl Acad Sci USA 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Huang L, Brooks SA, Li W, Fellers JP, Trick HN, Gill BS (2003) Map-based cloning of leaf rust resistance gene Lr21 from the large and polyploid genome of wheat. Genetics 164:655–664

    PubMed  CAS  Google Scholar 

  • Jantasuriyarat C, Vales MI, Watson CJW, Riera-Lizarazu O (2004) Identification and mapping of genetic loci affecting free-threshing habit and spike compactness in wheat (Triticum aestivum L.). Theor Appl Genet 108:261–273

    Article  PubMed  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Kerber ER (1964) Wheat: reconstitution of the tetraploid component (AABB) of hexaploids. Science 143:253–255

    Article  PubMed  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarossa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber ER, Rowland GG (1974) Origin of the free-threshing character in hexaploid wheat. Can J Genet Cytol 16:145–154

    Google Scholar 

  • Korzun V, Röder MS, Ganal MW, Worland AJ, Law CN (1998) Genetic analysis of the dwarfing gene (Rht8) in wheat. Part 1. Molecular mapping of Rht8 on the short arm of chromosome 2D of bread wheat (Triticum aestivum L.). Theor Appl Genet 96:1104–1109

    Article  CAS  Google Scholar 

  • Kosambi D (1944) Estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS (2007) Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet 114(2):285–294

    Article  PubMed  CAS  Google Scholar 

  • Lander E, Green P, Barlow A, Daley P, Stein L et al (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2002) The colinearity of the Sh2/A1 orthologous region in rice, sorghum and maize is interrupted and accompanied by genome expansion in the Triticeae. Genetics 160:1153–1162

    PubMed  CAS  Google Scholar 

  • Li W, Gill BS (2006) Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6:300–309

    Article  PubMed  CAS  Google Scholar 

  • Liu BH (1998) Statistical genomics: linkage, mapping and QTL analysis. CRC Press, Boca Raton

    Google Scholar 

  • MacKey J (1966) Species relationship in Triticum. In: Proceedings of the 2nd international wheat genetics symposium (Lund) 1963, Sweden. Hereditas (suppl) 2:237–276

  • Muramatsu M (1986) The super vulgare gene, Q: its universality in durum wheat and its phenotypic effects in tetraploid and hexaploid wheats. Can J Genet Cytol 28:30–41

    Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Kianian SF, Riera-Lizarazu O (2006) Map-based analysis of genes affecting brittle rachis character in tetraploid wheat (Triticum turgidum L.). Theor Appl Genet 112:373–381

    Article  PubMed  CAS  Google Scholar 

  • Nalam VJ, Vales MI, Watson CJW, Johnson EB, Riera-Lizarazu O (2007) Map-based analysis of genetic loci on chromosome 2D that affect glume tenacity and threshability components of free-threshing habit in common wheat (Triticum aestivum L.). Theor Appl Genet 116:35–145

    Article  Google Scholar 

  • Nelson JC, Van Deynze AE, Autrique E, Sorrells ME, Lu YH, Merlino M, Atkinson M, Leroy P (1995) Molecular mapping of wheat. Homoeologous group 2. Genome 38:516–524

    PubMed  CAS  Google Scholar 

  • Nesbit M, Samuel D (1995) In: Padulosi S, Hammer K, Heler J (eds) Hulled Wheats: Proceedings of the 1st international workshop on Hulled wheats, Castelvecchio Pacoli Italy, 21 and 22 July 1995 (International Plant Genetics Research Institute, Rome, 1996)

  • Paterson AH, Lin YR, Li Z, Schertz KF, Doebley JF, Pinson SRM, Liu SC, Stansel JW, Irvine JE (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1717

    Article  PubMed  CAS  Google Scholar 

  • Pestsova E, Ganal MW, Röder MS (2000) Isolation and mapping of microsatellite markers specific for the D genome of bread wheat. Genome 43:689–697

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Echalier B, Friebe B, Gill BS (2003) Molecular characterization of a set of wheat deletion stocks for use in chromosome bin mapping of ESTs. Funct Integr Genomics 3:39–55

    PubMed  CAS  Google Scholar 

  • Röder MS, Korzun V, Wendehake K, Plaschke J, Tixier MH, Leroy P, Ganal MW (1998) A microsatellite map of wheat. Genetics 149:2007–2023

    PubMed  Google Scholar 

  • Rowland GG, Kerber ER (1974) Telocentric mapping in hexaploid wheat of genes for leaf rust resistance and other characters derived from Aegilops squarossa. Can J Genet Cytol 16:137–144

    Google Scholar 

  • Salamini F, Ozkan H, Brandolini A, Schafer-Pregl R, Martin W (2002) Genetics and geography of wild cereal domestication in the near east. Nat Rev Genet 3:429–441

    PubMed  CAS  Google Scholar 

  • Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and useful markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747

    PubMed  CAS  Google Scholar 

  • Schuelke M (2000) An economic method for the fluorescent labeling of PCR fragments. Nat Biotechnol 18:233–234

    Article  PubMed  CAS  Google Scholar 

  • Sears ER (1954) The aneuploids of common wheat. Missouri Agri Exp Sta Res Bull 572:1–59

    Google Scholar 

  • Simonetti MC, Bellomo MP, Laghetti G, Perrino P, Simeone R, Blanco A (1999) Quantitative trait loci affecting free-threshing habit in tetraploid wheats. Genet Res Crop Evol 46:267–271

    Article  Google Scholar 

  • Simons KJ, Fellers JP, Trick HN, Zhang Z, Tai Y-S, Gill BS, Faris JD (2006) Molecular characterization of the major wheat domestication gene Q. Genetics 172:547–555

    Article  PubMed  CAS  Google Scholar 

  • Somers DJ, Issac P, Edwards K (2004) a high-density microsatellite consensus map for bread wheat (Triticum aestivum L.). Theor Appl Genet 109:1105–1114

    Article  PubMed  CAS  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R, Munkvold JD, Miftahudin, Mahmoud A, Ma X, Gustafson PJ, Qi LL, Echalier B, Gill BS, Matthews DE, Lazo GR, Chao S, Anderson OD, Edwards H, Linkiewicz AM, Dubcovsky J, Akhunov ED, Dvorak J, Zhang D, Nguyen HT, Peng J, Lapitan NL, Gonzalez-Hernandez JL, Anderson JA, Hossain K, Kalavacharla V, Kianian SF, Choi DW, Close TJ, Dilbirligi M, Gill KS, Steber C, Walker-Simmons MK, McGuire PE, Qualset CO (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Sourdille P, Singh S, Cadalen T, Brown-Guedira GL, Gay G, Qi L, Gill BS, Dufour P, Murigneux A, Bernard M (2004) Microsatellite-based deletion bin system for the establishment of genetic-physical relationship in wheat (Triticum aestivum L.). Funct Integr Genomics 4:12–25

    Article  PubMed  CAS  Google Scholar 

  • Taenzler B, Esposti RF, Vaccino P, Brandolini A, Effgen S, Heun M, Schafer-Pregl R, Borghi B, Salamini F (2002) Molecular linkage map of einkorn wheat: mapping of storage-protein and soft-glume genes and bread-making quality QTLs. Genet Res Camb 80:131–143

    CAS  Google Scholar 

  • Taketa S, Amino S, Tsujino Y, Sato T, Saisho D, Kakeda K, Nomura M, Suzuki T, Matsumoto T, Sato K, Kanamori H, Kawasaki S, Takeda K (2008) Barley grain with adhering hulls is controlled by an ERF family transcription factor gene regulating a lipid biosynthetic pathway. Proc Natl Acad Sci 105:4062–4067

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, McCouch SR (1997) Seed banks and molecular maps: unlocking genetic potential from the wild. Science 277:1063–1066

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Nussbaum-Wagler T, Li B, Zhao Q, Vigouroux Y, Faller M, Bombalies K, Lukens L, Doebley JF (2005) The origin of the naked grains of maize. Nature 436:714–719

    Article  PubMed  CAS  Google Scholar 

  • Ware D, Stein L (2003) Comparison of genes among cereals. Curr Opin Plant Biol 6:121–127

    Article  PubMed  CAS  Google Scholar 

  • Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain color dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Werner JE, Endo TR, Gill BS (1992) Toward a cytogenetically based physical map of the wheat genome. Proc Natl Acad Sci USA 89:11307–11311

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Tranquilly G, Helguera M, Fahima T, Dubcovsky J (2003) Positional cloning of the wheat vernalization gene VRN1. Proc Natl Acad Sci USA 100:6263–6268

    Article  PubMed  CAS  Google Scholar 

  • Yan L, Loukoianov A, Blechl A, Tranquilly G, Ramakrishna W, SanMiguel P, Bennetzen JL, Echenique V, Dubcovsky J (2004) The wheat VRN2 gene is a flowering repressor down-regulated by vernalization. Science 303:1640–1644

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We express our gratitude to Dr. Harcharan Dhaliwal and Dr. Francesco Salamini for supplying the T. monococcum free-threshing mutants and Duane Wilson and Jon Raupp for excellent technical assistance. Special thanks go to Dr. James Nelson for his help with the statistical analysis of linkage data. Research was partly funded by a USDA-CSREES special grant to WGGRC and a grant from the National Research Initiative of the USDA CSREES Coordinated Agricultural Project grant number 2006-55606-16629 to Dr. Guihua Bai. Mention of trade names or commercial products in this article is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the U.S. Department of Agriculture. This is contribution number 09-004-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram S. Gill.

Additional information

Communicated by P. Langridge.

Electronic supplementary material

Below is the link to the electronic supplementary material.

(DOC 172 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sood, S., Kuraparthy, V., Bai, G. et al. The major threshability genes soft glume (sog) and tenacious glume (Tg), of diploid and polyploid wheat, trace their origin to independent mutations at non-orthologous loci. Theor Appl Genet 119, 341–351 (2009). https://doi.org/10.1007/s00122-009-1043-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-1043-0

Keywords

Navigation