Skip to main content

Advertisement

Log in

Wild emmer: genetic resources, gene mapping and potential for wheat improvement

  • Review
  • Published:
Euphytica Aims and scope Submit manuscript

Abstract

Wild emmer, Triticum dicoccoides, the progenitor of cultivated wheat, harbors rich genetic resources for wheat improvement. They include many agronomic traits such as abiotic stress tolerances (salt, drought and heat), biotic stress tolerances (powdery mildew, rusts, and Fusarium head blight), grain protein quality and quantity, and micronutrient concentrations (Zn, Fe, and Mn). In this review, we summarize (1) traits and controlling genes identified and mapped in T. dicoccoides; and (2) the genes transferred to cultivated wheat from T. dicoccoides. These genes, controlling important agronomic traits such as disease resistance, high protein and micronutrient content, should contribute to wheat production and food nutrition. However, most of the rich genetic reservoir in wild emmer remains untapped, highlighting the need for further exploration and utilization for long-term wheat breeding programs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

cM:

Centi-Morgans

QTL:

Quantitative trait loci

AFLP:

Amplified fragment length polymorphism

RAPD:

Random-amplified polymorphic DNA

RFLP:

Restriction fragment length polymorphism

RGA:

Resistance gene analog

SSR:

Simple sequence repeat

STS:

Sequence tagged site

MAS:

Marker-assisted selection

FHB:

Fusarium head blight

GPC:

Grain protein content

NIL:

Near-isogenic line

References

  • Aaronsohn A (1913) The discovery of wild wheat. City Club Bull Chic 6:167–173

    Google Scholar 

  • Anikster Y, Manisterski J, Long DL, Leonard KJ (2005) Leaf rust and stem rust resistance in Triticum dicoccoides populations in Israel. Plant Dis 89:55–62

    Article  Google Scholar 

  • Avivi L (1978) High protein content in wild tetraploid Triticum dicoccoides Korn. In: Ramanujam S (ed) Proc 5th int wheat genet symp. Indian Society of Genetics and Plant Breeding, pp 372–380

  • Avivi L (1979) Utilization of Triticum dicoccoides for the improvement of grain protein quantity and quality in cultivated wheats. Monogr Genet Agrar 4:27–38

    Google Scholar 

  • Bennet FAG (1984) Resistance to powdery mildew in wheat: a review of its use in agriculture and breeding programs. Plant Pathol 33:279–300

    Article  Google Scholar 

  • Berzonsky WA, Hartel KD, Kianian SF, Leach GD (2004) Registration of four synthetic hexaploid wheat germplasm lines with resistance to Fusarium head blight. Crop Sci 44:1500–1501

    Google Scholar 

  • Blanco A, Simeone R, Gadaleta A (2006) Detection of QTLs for grain protein content in durum wheat. Theor Appl Genet 112:1195–1204

    Article  PubMed  CAS  Google Scholar 

  • Buerstmayr H, Stierschneider M, Steiner B, Lemmons M, Griessen M, Nevo E, Fahima T (2003) Variation for resistance to head blight caused by Fusarium graminearum in wild emmer (Triticum dicoccoides) originating from Israel. Euphytica 130:17–23

    Article  Google Scholar 

  • Cakmak I, Ozkan H, Braun HJ, Welch RM, Romheld V (2000) Zinc and iron concentrations in seeds of wild, primitive and modern wheats. Food Nutr Bull 21:401–403

    Google Scholar 

  • Cakmak I, Torun A, Millet E, Feldman M, Fahima T, Korol AB, Nevo E, Braun HJ, Ozkan H (2004) Triticum dicoccoides: an important genetic resource for increasing zinc and iron concentration in modern cultivated wheat. Soil Sci Plant Nutr 50:1047–1054

    CAS  Google Scholar 

  • Chague V, Fahima T, Dahan T, Sun GL, Korol AB, Ronin YI, Grama A, Roder MS, Nevo E (1999) Isolation of microsatellite and RAPD markers flanking the Yr15 gene of wheat using NILs and bulked segregant analysis. Genome 42:1050–1056

    Article  PubMed  CAS  Google Scholar 

  • Chee PW, Elias EM, Kianinan SF, Anderson JA (1998) Introgression of a high protein gene from LDN (DIC-6B) substitution line. In: Slinkard AE (ed) 9th int wheat genet symp, vol 2. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 179–181

  • Chee PW, Elias EM, Anderson JA, Kianian SF (2001) Evaluation of a high grain protein QTL from Triticum turgidum L. var. dicoccoides in an adapted durum wheat background. Crop Sci 41:295–301

    CAS  Google Scholar 

  • Chen XM, Luo YH, Xia XC, Xia LQ, Chen X, Ren ZL, He ZH, Jia JZ (2005) Chromosomal location of powdery mildew resistance gene Pm16 in wheat using SSR marker analysis. Plant Breed 124:225–228

    Article  CAS  Google Scholar 

  • Chicaiza O, Khan IA, Zhang X, Brevis JC, Jackson L, Chen X, Dubcovsky J (2006) Registration of five wheat isogenic lines for leaf rust and stripe rust resistance genes. Crop Sci 46:485–487

    Google Scholar 

  • Chu CG, Xu SS, Faris JD, Nevo E, Friesen TL (2008) Seedling resistance to tan spot and Stagonospora nodorum leaf blotch in wild emmer wheat (Triticum turgidum ssp. dicoccoides). Plant Dis (in press)

  • DePauw RM, Townley-Smith TF, Humphreys G, Knox RE, Clarke FR, Clarke JM (2005) Lillian hard red spring wheat. Can J Plant Sci 85:397–401

    Google Scholar 

  • DePauw RM, Knox RE, Clarke FR, Wang H, Fernandez MR, Clarke JM, McCaig TN (2007) Shifting undesirable correlations. Euphytica 157:409–415

    Article  Google Scholar 

  • Dick JW, Youngs VL (1988) Evaluation of durum wheat, semolina, and pasta in the United States. In: Fabriani G, Lintas C (eds) Durum wheat: chemistry and technology. American Association of Cereal Chemists, St. Paul, MN, pp 237–248

    Google Scholar 

  • Distelfeld A, Uauy C, Olmos S, Schlatter AR, Dubcovsky J, Fahima T (2004) Microcolinearity between a 2-cM region encompassing the grain protein content locus Gpc-6B1 on wheat chromosome 6B and a 350-kb region on rice chromosome 2. Funct Integr Genomics 4:59–66

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Uauy C, Fahima T, Dubcovsky J (2006) Physical map of the wheat high-grain protein content gene Gpc-B1 and development of a high-throughput molecular marker. New Phytol 169:753–763

    Article  PubMed  CAS  Google Scholar 

  • Distelfeld A, Cakmak I, Peleg Z, Ozturk L, Yazici AM, Budak H, Saranga Y, Fahima T (2007) Multiple QTL-effects of wheat Gpc-B1 locus on grain protein and micronutrient concentrations. Physiol Plant 129:635–643

    Article  CAS  Google Scholar 

  • Feldman M, Sears ER (1981) The wild gene resources of wheat. Sci Am 244:102–112

    Article  Google Scholar 

  • Finney KF, Yamazaki WT, Youngs VL, Rubenthaler GL (1987) Quality of hard, soft, and durum wheats. In: Heyne EG (ed) Wheat and wheat improvement. Agron Monogr 13, 2nd edn. ASA, CSSA, and SSSA, Madison, WI, pp 677–748

    Google Scholar 

  • Gamotin EL, Berzonsky WA, Ali S, Adhikari T, Leach GD (2007) Pyramiding different sources of Fusarium head blight resistance into spring wheat (Abst). In: Plant & animal genomes XV conference, San Diego, CA, USA, p 139

  • Gerechter-Amitai ZK, Grama A (1974) Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheat. I. Triticum durum. Euphytica 23:387–392

    Article  Google Scholar 

  • Gerechter-Amitai ZK, Grama A (1977) Use of alien genes in wheat breeding. Ann Wheat Newslett 23:57–58

    Google Scholar 

  • Gerechter-Amitai ZK, Stubbs RW (1970) A valuable source of yellow rust resistance in Israeli population of wild emmer Triticum dicoccoides Koern. Euphytica 19:12–21

    Article  Google Scholar 

  • Gerechter-Amitai ZK, Van Silfhout CH, Grama A, Kleitman F (1989) Yr15—a new gene for resistance to Puccinia striiformis in Triticum dicoccoides sel. G-25. Euphytica 43:187–190

    Article  Google Scholar 

  • Gonzalez-Hernandez JL, Elias EM, Kianian SF (2004) Mapping genes for grain protein concentration and grain yield on chromosome 5B of Triticum turgidum (L.) var. dicoccoides. Euphytica 139:217–225

    Article  CAS  Google Scholar 

  • Grama A, Gerechter-Amitai ZK (1974) Inheritance of resistance to stripe rust (Puccinia striiformis) in crosses between wild emmer (Triticum dicoccoides) and cultivated tetraploid and hexaploid wheat. II. Triticum aestivum. Euphytica 23:393–398

    Article  Google Scholar 

  • Grama A, Porter NG, Wright DSC (1987) Hexaploid wild emmer wheat derivatives grown under New Zealand conditions. 2. Effect of foliar urea sprays on plant and grain nitrogen and baking quality. N Z J Agric Res 30:45–51

    Google Scholar 

  • Hartel KD, Berzonsky WA, Kianian SF, Ali S (2004) Expression of a Triticum turgidum var. dicoccoides source of Fusarium head blight resistance transferred to synthetic hexaploid wheat. Plant Breed 123:516–519

    Article  Google Scholar 

  • Hovmoller MS (2007) Sources of seedling and adult plant resistance to Puccinia striiformis f.sp. tritici in European wheats. Plant Breed 126:225–233

    Article  CAS  Google Scholar 

  • Hunger RM, Sherwood JL, Pennington RE, Carver BF, Nevo E (1992) Reaction of native populations of Triticum dicoccoides to wheat soilborne mosaic. In: Biological & cultural tests for control of plant Disease, vol 7. APS Press

  • Joppa LR, Cantrell RG (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    CAS  Google Scholar 

  • Joppa LR, Hart GE, Hareland GA (1997) Mapping a QTL for grain protein in tetraploid wheat (Triticum turgidum L.) using a population of recombinant inbred chromosome lines. Crop Sci 37:1586–1589

    CAS  Google Scholar 

  • Khan IA, Procunier JD, Humphreys DG, Tranquilli G, Schlatter AR, Marcucci-Poltri S, Frohberg R, Dubcovsky J (2000) Development of PCR-based markers for a high grain protein content gene from Triticum turgidum ssp. dicoccoides transferred to bread wheat. Crop Sci 40:518–524

    CAS  Google Scholar 

  • Khanna-Chopra R, Viswanathan C (1999) Evaluation of heat stress tolerance in irrigated environment of T. aestivum and related species. I. Stability in yield and yield components. Euphytica 106:169–180

    Article  Google Scholar 

  • Kovacs MIP, Howes NK, Clarke JM, Leisle D (1998) Quality characteristics of durum wheat lines deriving high protein from a Triticum dicoccoides (6B) substitution. J Cereal Sci 27:47–51

    Article  CAS  Google Scholar 

  • Krugman T, Rubin B, Levy O, Snape JW, Nevo E (1995) RFLP mapping of chlortoluron resistance gene, Su1, in bread wheat Triticum aestivum and the wild wheat Triticum dicoccoides (Abstr). Annu Wheat Newslett 41:125

    Google Scholar 

  • Krugman T, Levy O, Snape JW, Rubin B, Korol AB, Nevo E (1997) Comparative RFLP mapping of the chlorotoluron resistance gene (Su1) in cultivated wheat (Triticum aestivum) and wild wheat (Triticum dicoccoides). Theor Appl Genet 94:46–51

    Article  CAS  PubMed  Google Scholar 

  • Kumar S, Stack RW, Friesen TL, Faris JD (2007) Identification of a novel Fusarium head blight resistance quantitative trait locus on chromosome 7A in tetraploid wheat. Phytopathology 97:592–597

    Article  PubMed  CAS  Google Scholar 

  • Levy AA (1987) Increase in grain protein percentage in high-yielding common wheat breeding lines by genes from wild tetraploid wheat. Euphytica 36:353–359

    Article  Google Scholar 

  • Levy AA, Feldman M (1989) Location of genes for high grain protein percentage and other quantitative traits in wild wheat Triticum turgidum var. dicoccoides. Euphytica 41:113–122

    Article  Google Scholar 

  • Li XH, Wang AL, Xiao YH, Yan YM, He ZH, Appels R, Ma WJ, Hsam SLK, Zeller FJ (2007) Cloning and characterization of a novel low molecular weight glutenin subunit gene at the Glu-A3 locus from wild emmer wheat (Triticum turgidum L. var. dicoccoides). Euphytica 159:181–190

    Article  CAS  Google Scholar 

  • Liu ZY, Sun QX, Ni ZF, Nevo E, Yang TM (2002) Molecular characterization of a novel powdery mildew resistance gene Pm30 in wheat originating from wild emmer. Euphytica 123:21–29

    Article  CAS  Google Scholar 

  • Marais GF, Pretorius ZA, Wellings CR, McCallum B, Marais AS (2005) Leaf rust and stripe rust resistance genes transferred to common wheat from Triticum dicoccoides. Euphytica 143:115–123

    Article  CAS  Google Scholar 

  • McIntosh RA, Wellings CR, Park RF (1995) Wheat rusts: an atlas of resistance genes. Kluwer Academic, Dordrecht, The Netherlands

    Google Scholar 

  • McIntosh RA, Silk J, The TT (1996) Cytogenetic studies in wheat XVII. Monosomic analysis and linkage relationships of gene Yr15 for resistance to stripe rust. Euphytica 89:395–399

    Google Scholar 

  • McIntosh RA, Devos KM, Dubcovsky J, Rogers WJ, Morris CF, Appels R, Somers DJ, Anderson OA (2007) Catalogue of gene symbols for wheat: 2007 supplement. http://wheat.pw.usda.gov/ggpages/awn/53/Textfile/WGC.html

  • Meidaner T (1997) Breeding wheat and rye for resistance to Fusarium diseases. Plant Breed 116:201–220

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Miller JD, Stack RW (2005) Registration of ‘Steele-ND’ wheat. Crop Sci 45:1163–1164

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Olson T, Friesen TL, Rasmussen JB, Stack RW (2006a) Registration of ‘Glenn’ wheat. Crop Sci 46:473–474

    Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW, Rasmussen JB, Friesen TL (2006b) Registration of ‘Howard’ wheat. Crop Sci 46:2702–2703

    Article  Google Scholar 

  • Mergoum M, Frohberg RC, Stack RW (2007) Breeding hard red spring wheat for Fusarium head blight resistance. In: Buck HT et al. (eds) Wheat production in stressed environments. Springer, Netherlands, pp 161–167

    Chapter  Google Scholar 

  • Mesfin A, Frohberg RC, Anderson JA (1999) RFLP markers associated with high grain protein from Triticum turgidum L. var. dicoccoides introgressed into hard red spring wheat. Crop Sci 39:508–513

    Google Scholar 

  • Mesterhazy A (1997) Breeding for resistance to FHB in wheat. In: Duben HJ et al (eds) Fusarium head scab: global status and future prospects. CIMMYT, Mexico, DF, Mexico, pp 79–85

  • Miller JD, Stack RW, Joppa LR (1998) Evaluation of Triticum turgidum L. var. dicoccoides for resistance to Fusarium head blight and stem rust. In: Slinkard AE (ed) Proc 9th int wheat genet symp, vol 3. University Extension Press, University of Saskatchewan, Saskatoon, Canada, pp 292–293

  • Mohler V, Zeller FJ, Wenzel G, Hsam SLK (2005) Chromosomal location of genes for resistance to powdery mildew in common wheat (Triticum aestivum L. em Thell.). 9. Gene MlZec1 from the Triticum dicoccoides-derived wheat line Zecoi-1. Euphytica 142:161–167

    Article  CAS  Google Scholar 

  • Moseman JG, Nevo E, El-Morshidy MA, Zohary D (1984) Resistance of Triticum dicoccoides collected in Israel to infection with Erysiphe graminis tritici. Euphytica 33:41–47

    Article  Google Scholar 

  • Moseman JG, Nevo E, Gerechter-Amitai ZK, El-Morshidy MA, Zohary D (1985) Resistance of Triticum dicoccoides collected in Israel to infection with Puccinia recondita tritici. Crop Sci 25:262–265

    Google Scholar 

  • Nevo E (1993) Genetic resources of wild emmer, Triticum dicoccoides for wheat improvement: news and views (Abstract). In: Li ZS, Xin ZY (eds) Proc 8th int wheat genet symp. China Agricultural Scientech Press, Beijing, p 3

  • Nevo E (2001) Evolution of genome–phenome diversity under environmental stress. Proc Natl Acad Sci USA 98:6233–6240

    Article  PubMed  CAS  Google Scholar 

  • Nevo E (2004) Population genetic structure of wild barley and wheat in the near east fertile crescent: regional and local adaptive patterns. In: Gupta PK, Varshney RK (eds) Cereal genomics, chapter 6, pp 135–163

  • Nevo E, Beiles A (1989) Genetic diversity of wild emmer wheat in Israel and Turkey. Theor Appl Genet 77:421–455

    Article  Google Scholar 

  • Nevo E, Beiles A (1992) Amino-acid resources in the wild progenitor of wheats, Triticum dicoccoides in Israel: polymorphisms and predictability by ecology and isozymes. Plant Breed 108:190–201

    Article  CAS  Google Scholar 

  • Nevo E, Payne PI (1987) Wheat storage proteins: diversity of HMW glutenin subunits in wild emmer from Israel. I. Geographical patterns and ecological predictability. Theor Appl Genet 74:827–836

    Article  CAS  Google Scholar 

  • Nevo E, Moseman JG, Beiles A, Zohary D (1985) Patterns of resistance of Israeli wild emmer wheat to pathogens I. Predictive method by ecology and allozyme genotypes for powdery mildew and leaf rust. Genetica 67:209–222

    Article  Google Scholar 

  • Nevo E, Gerechter-Amitai Z, Beiles A, Golenberg EM (1986a) Resistance of wild wheat to stripe rust: predictive method by ecology and allozyme genotypes. Pl Syst Evol 153:13–30

    Article  Google Scholar 

  • Nevo E, Grama A, Beiles A, Golenberg EM (1986b) Resources of high-protein genotypes in wild wheat, Triticum dicoccoides in Israel: predictive method by ecology and allozyme markers. Genetica 68:215–227

    Article  CAS  Google Scholar 

  • Nevo E, Gerechter-Amitai Z, Beiles A (1991) Resistance of wild emmer wheat to stem rust: ecological, pathological and allozyme associations. Euphytica 53:121–130

    Article  CAS  Google Scholar 

  • Nevo E, Gorham J, Beiles A (1992) Variation for 22Na uptake in wild emmer wheat, Triticum dicoccoides in Israel: salt tolerance resources for wheat improvement. J Exp Bot 43:511–518

    Article  CAS  Google Scholar 

  • Nevo E, Krugman T, Beiles A (1993) Genetic resources for salt tolerance in the wild progenitors of wheat (Triticum dicoccoides) and barley (Hordeum spontaneum) in Israel. Plant Breed 110:338–341

    Article  Google Scholar 

  • Nevo E, Korol AB, Beiles A, Fahima T (2002) Evolution of wild emmer and wheat improvement: population genetics, genetic resources, and genome organization of wheat’s progenitor, Triticum dicoccoides. Springer-Verlag, Berlin, Germany

    Google Scholar 

  • Oliver RE, Stack RW, Miller JD, Cai X (2007) Reaction of wild emmer wheat accessions to Fusarium head blight. Crop Sci 47:893–899

    Google Scholar 

  • Olmos S, Distelfeld A, Chicaiza O, Schlatter AR, Fahima T, Echenique V, Dubcovsky J (2003) Precise mapping of a locus affecting grain protein content in durum wheat. Theor Appl Genet 107:1243–1251

    Article  PubMed  CAS  Google Scholar 

  • Otto CD, Kianian SF, Elias EM, Stack RW, Joppa LR (2002) Genetic dissection of a major Fusarium head blight QTL in tetraploid wheat. Plant Mol Biol 48:625–632

    Article  PubMed  CAS  Google Scholar 

  • Pagnotta MA, Nevo E, Beiles A, Porceddu E (1995) Wheat storage proteins: glutenin diversity in wild emmer, Triticum dicoccoides, in Israel and Turkey. 2. DNA diversity detected by PCR. Theor Appl Genet 91:409–414

    Article  CAS  Google Scholar 

  • Peleg Z, Fahima T, Abbo S, Krugman T, Nevo E, Yakir D, Saranga Y (2005) Genetic diversity for drought resistance in wild emmer wheat and its ecogeographical associations. Plant Cell Environ 28:176–191

    Article  Google Scholar 

  • Peleg Z, Fahima T, Korol AB, Abbo S, Krugman T, Avneri A, Röder MS, Nevo E, Yakir D, Saranga Y (2006) Genomic dissection of drought resistance in wild emmer wheat × durum wheat population (Abstr). Plant & animal genomes XIV conference, San Diego, CA, USA, p 293

  • Peng JH, Fahima T, Röder MS, Li YC, Dahan A, Grama A, Ronin YI, Korol AB, Nevo E (1999) Microsatellite tagging of stripe rust resistance gene YrH52 derived from wild emmer wheat, Triticum dicoccoides, and suggestive negative crossover interference on chromosome 1B. Theor Appl Genet 98:862–872

    Article  CAS  Google Scholar 

  • Peng JH, Korol AB, Fahima T, Röder MS, Ronin YI, Li YC, Nevo E (2000a) Molecular genetic maps in wild emmer wheat, Triticum dicoccoides: genome-wide coverage, massive negative interference, and putative quasi-linkage. Genome Res 10:1509–1531

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Huang QY, Dahan A, Li YC, Grama A, Nevo E (2000b) High-density molecular map of chromosome region harboring stripe-rust resistance genes YrH52 and Yr15 derived from wild emmer wheat, Triticum dicoccoides. Genetica 109:199–210

    Article  PubMed  CAS  Google Scholar 

  • Peng JH, Fahima T, Röder MS, Li YC, Grama A, Nevo E (2000c) Microsatellite high-density mapping of stripe-rust resistance gene YrH52 region on chromosome 1B and evaluation of its marker-assisted selection in F2 generation in wild emmer wheat. New Phytol 146:141–154

    Article  CAS  Google Scholar 

  • Peng JH, Ronin Y, Fahima T, Röder MS, Li YC, Nevo E, Korol A (2003) Domestication quantitative trait loci in Triticum dicoccoides, the progenitor of wheat. Proc Natl Acad Sci USA 100:2489–2494

    Article  PubMed  CAS  Google Scholar 

  • Qi PF, Yue YW, Long H, Wei YM, Yan ZH, Zheng YL (2006) Molecular characterization of α-gliadin genes from wild emmer wheat (Triticum dicoccoides). DNA Seq 17:415–421

    Article  PubMed  CAS  Google Scholar 

  • Reader SM, Miller TE (1991) The introduction into bread wheat of a major gene for resistance to powdery mildew from wild emmer wheat. Euphytica 53:57–60

    Article  Google Scholar 

  • Rong JK, Millet E, Manisterski J, Feldman M (2000) A new powdery mildew resistance gene: Introgression from wild emmer into common wheat and RFLP-based mapping. Euphytica 115:121–126

    Article  CAS  Google Scholar 

  • Singh PK, Gonzalez-Hernandez JL, Mergoum M, Ali S, Adhikari TB, Kianian SF, Elias EM, Hughes GR (2006) Identification and molecular mapping of a gene conferring resistance to Pyrenophora tritici-repentis race 3 in tetraploid wheat. Phytopathology 96:885–889

    Article  PubMed  CAS  Google Scholar 

  • Singh PK, Mergoum M, Adhikari TB, Kianian SF, Elias EM (2007) Chromosomal location of genes for seedling resistance to tan spot and Stagonospora nodorum blotch in tetraploid wheat. Euphytica 155:27–34

    Article  Google Scholar 

  • Snape JW, Leckie D, Parker BB, Nevo E (1991) The genetical analysis and exploitation of differential responses to herbicides in crop species. In: Casley JC, Cussans GW, Atkin RK (eds) Herbicide resistance in weeds and crops. Butterworth-Heinemann, Oxford, UK, pp 305–317

    Google Scholar 

  • Stack RW, Elias EM, Mitchell Fetch J, Miller JD, Joppa LR (2002) Fusarium head blight reaction of Langdon durum—Triticum dicoccoides chromosome substitution lines. Crop Sci 42:637–642

    Google Scholar 

  • Sun GL, Fahima T, Korol AB, Turpeinen T, Grama A, Ronin YI, Nevo E (1997) Identification of molecular markers linked to the Yr15 stripe rust resistance gene of wheat originated in wild emmer wheat Triticum dicoccoides. Theor Appl Genet 95:622–628

    Article  CAS  Google Scholar 

  • The TT, Nevo E, McIntosh RA (1993) Response of Israeli wild emmer to selected Australian pathotypes of Puccinia species. Euphytica 71:75–81

    Article  Google Scholar 

  • Uauy C, Brevis JC, Chen X, Khan I, Jackson L, Chicaiza O, Distelfeld A, Fahima T, Dubcovsky J (2005) High temperature adult-plant (HTAP) stripe rust resistance gene Yr36 from Triticum turgidum ssp. dicoccoides is closely linked to the grain protein content locus Gpc-B1. Theor Appl Genet 122:97–105

    Article  CAS  Google Scholar 

  • Uauy C, Brevis JC, Dubcovsky J (2006a) The high grain protein content gene Gpc-B1 accelerates senescence and has pleiotropic effects on protein content in wheat. J Exp Bot 57:2785–2794

    Article  PubMed  CAS  Google Scholar 

  • Uauy C, Distelfeld A, Fahima T, Blechl A, Dubcovsky J (2006b) A NAC gene regulating senescence improves grain protein, zinc, and iron content in wheat. Science 314:1298–1301

    Article  PubMed  CAS  Google Scholar 

  • Wang JR, Wei YM, Long XY, Yan ZH, Nevo E, Baum BR, Zheng YL (2008) Molecular evolution of dimeric α-amylase inhibitor genes in wild emmer wheat and its ecological association. BMC Evol Biol 8:91. doi:10.1186/1471-2148-8-91

    Article  PubMed  CAS  Google Scholar 

  • Xie WL (2006) Identification and molecular mapping of powdery mildew resistance genes derived from wild relatives of wheat. PhD Thesis, University of Haifa, Israel

  • Xie CJ, Sun QX, Ni ZF, Yang ZM, Nevo E, Fahima T (2003) Chromosomal location of a Triticum dicoccoides-derived powdery mildew resistance gene in common wheat by using microsatellite markers. Theor Appl Genet 106:341–345

    PubMed  CAS  Google Scholar 

  • Xu SS, Khan K, Klindworth DL, Faris JD, Nygard G (2004) Chromosomal location of genes for novel glutenins and gliadins in emmer wheat (Triticum turgidum L. var. dicoccoides). Theor Appl Genet 108:1221–1228

    Article  PubMed  CAS  Google Scholar 

  • Zakari A, McIntosh RA, Hovmoller MS, Wellings CR, Shariflou MR, Hayden M, Bariana HS (2003) Recombination of Yr15 and Yr24 in chromosome 1BS. In: Pogna NE, Romano M, Pogna EA, Galterio G (eds) Proc 10th int wheat genet symp, vol 1. Instituto Sperimentale per la Cerealicoltura, Rome, pp 417–420

  • Zhou R, Zhu Z, Kong X, Huo N, Tian Q, Li P, Jin C, Dong Y, Jia J (2005) Development of wheat near-isogenic lines for powdery mildew resistance. Theor Appl Genet 110:640–648

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank Drs Junhua Peng, Youchun Li, Avigdor Beiles, and Robert McIntosh for valuable suggestions and comments to improve the manuscript. This study was supported by the Ancell-Teicher Research Foundation for Genetics and Molecular Evolution and the Israeli Discount Bank Chair of Evolutionary Biology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eviatar Nevo.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xie, W., Nevo, E. Wild emmer: genetic resources, gene mapping and potential for wheat improvement. Euphytica 164, 603–614 (2008). https://doi.org/10.1007/s10681-008-9703-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10681-008-9703-8

Keywords

Navigation