Skip to main content
Log in

Multiple genetic pathways for seed shattering in the grasses

  • Original Paper
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Shattering is an essential seed dispersal mechanism in wild species. It is believed that independent mutations at orthologous loci led to convergent domestication of cereal crops. To investigate genetic relationships of Triticeae shattering genes with those of other grasses, we mapped spike-, barrel- (B-type), and wedge-type (W-type) spikelet disarticulation genes in wheat and its wild relatives. The Br1 gene for W-type disarticulation was mapped to a region delimited by Xpsr598 and Xpsr1196 on the short arm of chromosomes 3A in Triticum timopheevii and 3S in Aegilops speltoides. The spike- and W-type disarticulation genes are allelic at Br1 in Ae. speltoides. The B-type disarticulation gene, designated as Br2, was mapped to an interval of 4.4 cM between Xmwg2013 and Xpsr170 on the long arm of chromosome 3D in Aegilops tauschii, the D-genome donor of common wheat. Therefore, B- and W-type disarticulations are governed by two different orthologous loci on group-3 chromosomes. Based on map position, orthologs of Br1 and Br2 were not detected in barley, maize, rice, and sorghum, indicating multiple genetic pathways for shattering in grasses. The implications of the mapping results are discussed with regard to the evolution of polyploid wheat and domestication of cereals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig 5

Similar content being viewed by others

References

  • Brown-Guedira GL, Badaevea ED, Gill BS, Cox TS (1996) Chromosome substitution of Triticum timopheevii in common wheat and some observation on the evolution of polyploid wheat species. Theor Appl Genet 93:1291–1298

    Article  Google Scholar 

  • Chen Q-F, Yen C, Yang JL (1998) Chromosome location of the gene for brittle rachis in the Tibetan weedrace of common wheat. Genet Resour Crop Evol 45:407–410

    Article  Google Scholar 

  • Dvorak J, Luo M-C, Yang Z-L, Zhang H-B (1998) The structure of the Aegilops tauschii gene pool and the evolution of hexaploid wheat. Theor Appl Genet 97:657–670

    Article  CAS  Google Scholar 

  • Faris JD, Laddomada B, Gill BS (1998) Molecular mapping of segregation distortion loci in Aegilops tauschii. Genetics 149:319–327

    PubMed  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Faris JD, Fellers JP, Brooks SA, Gill BS (2003) A bacterial artificial chromosome contig spanning the major domestication locus Q in wheat and identification of a candidate gene. Genetics 164:311–321

    PubMed  CAS  Google Scholar 

  • Feldman M (2001) Origin of cultivated wheat. In: Bojean AP, Angus WJ (eds) The world wheat book—a history of wheat breeding. Lavoisier, London, UK, pp 3–58

    Google Scholar 

  • Ferrandiz C, Liljegren SJ, Yanofsky MF (2000) Negative regulation of the SHATTERPROOF genes by FRUITFULL during Arabidopsis fruit development. Science 289:436–438

    Article  PubMed  CAS  Google Scholar 

  • Franckowiak JD, Konishi T (1997a) Stock number: BGS115. Barley Newsl 26:149

    Google Scholar 

  • Franckowiak JD, Konishi T (1997b) Stock number: BGS116. Barley Newsl 26:150

    Google Scholar 

  • Friebe B, Tuleen NA, Jiang J, Gill BS (1993) Standard karyotype of Triticum longissimum and its cytogenetic relationship with T. aestivum. Genome 36:731–742

    Article  PubMed  CAS  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1995) Standard karyotype of Triticum searsii and its relationship with other S-genome species and common wheat. Theor Appl Genet 91:248–254

    Article  Google Scholar 

  • Friebe B, Qi LL, Nasuda S, Zhang P, Tuleen NA, Gill BS (1999a) Development of a complete set of Triticum aestivumAegilops speltoides chromosome addition lines. Theor Appl Genet 101:51–58

    Article  Google Scholar 

  • Friebe B, Tuleen NA, Gill BS (1999b) Development and identification of a complete set of Triticum aestivumAegilops geniculata chromosome addition lines. Genome 42:374–380

    Article  Google Scholar 

  • Huang S, Sirikhachornkit A, Su X, Faris J, Gill BS et al (2002) Genes encoding plastid acetyl-CoA carboxylase and 3-phosphoglycerate kinase of the Triticum/Aegilops complex and the evolutionary history of polyploid wheat. Proc Natl Acad Sci U S A 99:8133–8138

    Article  PubMed  CAS  Google Scholar 

  • Iqbal N, Reader SM, Caligari PD, Miller TE (2000) The production and characterization of recombination between chromosome 3N of Aegilops uniaristata and chromosome 3A of wheat. Heredity 84:487–492

    Article  PubMed  CAS  Google Scholar 

  • Jiang J, Gill BS (1994) Different species-specific chromosome translocations in Triticum timopheevii and T. turgidum support the diphyletic origin of polyploid wheats. Chromosome Res 2:59–64

    Article  PubMed  CAS  Google Scholar 

  • Joppa LR, Cantrell GR (1990) Chromosomal location of genes for grain protein content of wild tetraploid wheat. Crop Sci 30:1059–1064

    Article  CAS  Google Scholar 

  • Kandemir N, Kudrna DA, Ullrich SE, Kleinhofs A (2000) Molecular marker assisted genetic analysis of head shattering in six-rowed barley. Theor Appl Genet 101:203–210

    Article  CAS  Google Scholar 

  • Kellogg EA (2001) Evolutionary history of the grasses. Plant Physiol 125:1198–1205

    Article  PubMed  CAS  Google Scholar 

  • Kihara H, Lilienfeld FA (1932) Genomanalyse bei Triticum and Aegilops. IV. Untersuchungen an Aegilops × Triticum und Aegilops × Aegilops Bastarden. Cytologia 3:384–456

    Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat: an introduction. University of Missouri-Columbia, 142 pp

  • King IP, Law CN, Cant KA, Orford SE, Reader SM et al (1997) Tritipyrum, a potential new salt-tolerant cereal. Plant Breed 116:127–132

    Article  Google Scholar 

  • Komatsuda T, Mano Y (2002) Molecular mapping of the intermedium spike-c (int-c) and nonbrittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor Appl Genet 105:85–90

    Article  PubMed  CAS  Google Scholar 

  • Komatsuda T, Maxim P, Senthil N, Mano Y (2004) High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109:986–995

    Article  PubMed  CAS  Google Scholar 

  • Konishi S, Lin SY, Fukuta Y, Izawa T, Sasaki T et al (2005) Molecular cloning of a major QTL, qSH-1, controlling seed shattering habit in rice. In: Plant and animal genome XIII abstract, W306

  • Kosambi D (1944) Estimation of map distances from recombination values. Ann Eugen 12:172–175

    Google Scholar 

  • Lander E, Green P, Barlow A, Daley P, Stein L et al (1987) MAPMAKER: an interactive computer package for constructing primary linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Leighty CE, Boshnankian S (1921) Genetic behavior of the spelt form in crosses between Triticum spelta and Triticum aestivum. J Agric Res 7:335–364

    Google Scholar 

  • Liljegren SJ, Ditta GS, Eshed Y, Saidge B, Bowman JL et al (2000) SHATTERPROOF MADS-box genes control seed dispersal in Arabidopsis. Nature 404:766–770

    Article  PubMed  CAS  Google Scholar 

  • MacKey J (1966) Species relationship in Triticum. Proc 2nd Int Wheat Genet Symp (Hereditas Suppl) 2:237–276

    Google Scholar 

  • Mao L, Begum D, Chuang H-W, Budiman MA, Szymkowiakish EJ et al (2000) JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406:910–913

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto K, Teramura T, Tabushi J (1963) Development analysis of the rachis disarticulation in Triticum. Wheat Inf Serv 15–16:23–25

    Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89, 107–116

    Google Scholar 

  • McIntosh RA, Hart GE, Devos KM, Gale MD, Rogers WJ (1998) Catalogue of gene symbols for wheat. In: Slinkard AE (ed) Proc 9th Int Wheat Genet Symp, vol 5. University Extension Press, Saskatoon, Canada, pp 1–235

    Google Scholar 

  • Miczynski K (1926) Etudes genetiques sur le genre Aegilops. I. Experiences avec l’ Aegilops speltoides Jaub. Et Spach. Acta Soc Bot Pol 4:20–40

    Google Scholar 

  • Miller TE, Reader SM, Mahmood A, Purdie MA, King IP (1995) Chromosome 3N of Aegilops uniaristata—a source of tolerance to high levels of aluminum for wheat. In: Li ZS, Xin ZY (eds), Proc 8th Int Wheat Genet Symp 1993. China Agricultural Scientech Press, Beijing, China, pp 1037–1042

    Google Scholar 

  • Mori N, Liu Y-G, Tsunewaki K (2001) Wheat phylogeny determined by RFLP analysis of nuclear DNA. 2. Wild tetraploid wheats. Theor Appl Genet 90:129–134

    Google Scholar 

  • Müller J, Wang Y, Franzen R, Santi L, Salamini F, Rohde W (2001) In vitro Interactions between barley TALE homeodomain proteins suggest a role for protein–protein associations in regulation of Knox gene function. Plant J 27:13–23

    Article  PubMed  Google Scholar 

  • Muramatsu M (1963) Dosage effect of the spelta gene q of the hexaploid wheat. Genetics 48:469–482

    PubMed  CAS  Google Scholar 

  • Paterson AH, Lin Y-R, Li Z, Schertz KF, Doebley JF et al (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    Article  PubMed  CAS  Google Scholar 

  • Qi L, Echalier B, Chao S, Lazo GR, Butler GE et al (2004) A chromosome bin map of 16,000 EST loci and distribution of genes among the three genomes of polyploid wheat. Genetics 168:701–712

    Article  PubMed  CAS  Google Scholar 

  • Riley RG, Kimber G, Law CN (1966) Correspondence between wheat and alien chromosomes. Annu Rep Plant Breed Inst 1964–1965:108–109

    Google Scholar 

  • Roeder AH, Ferrandiz C, Yanofsky MF (2003) The role of the REPLUMLESS homeodomain protein in patterning the Arabidopsis fruit. Curr Biol 13:1630–1635

    Article  PubMed  CAS  Google Scholar 

  • Savidge B, Rounsley SD, Yanofsky MF (1995) Temporal relationship between the transcription of two Arabidopsis MADS box genes and the floral organ identity genes. Plant Cell 7:721–733

    Article  PubMed  CAS  Google Scholar 

  • Schiemann E (1928) Zytologische und pflanzen-geographische Beitrage zur gattung Aegilops (II. Mitteilung). Ber Dtsch Bot Ges 46:107–123

    Google Scholar 

  • Shao Q, Li C, Basang C (1983) Semiwild wheat from Xizang (Tibet). In: Sakamoto S (ed) Proc 6th Int Wheat Genet Symp. Plant Germ Plasm Institute, Kyoto, Japan, pp 111–114

    Google Scholar 

  • Singh HB, Anderson E, Pal PB (1957) Studies in the genetics of Triticum vavilovii Jackub. Agron J 49:4–11

    Article  Google Scholar 

  • Sorrells ME, La Rota M, Bermudez-Kandianis CE, Greene RA, Kantety R et al (2003) Comparative DNA sequence analysis of wheat and rice genomes. Genome Res 13:1818–1827

    PubMed  CAS  Google Scholar 

  • Takahashi R, Hayashi J (1964) Linkage study of two complementary genes for brittle rachis in barley. Ber Ohara Inst Landwirtsch Biol Okayama Univ 12:99–105

    Google Scholar 

  • Tsunewaki K (1968) Origin and phylogenetic differentiation of bread wheat revealed by comparative gene analysis. In: Finlay KW, Shepherd KW (eds) Proc 3rd Int Wheat Genet Symp. Australian Academy of Science, Canberra, Australia, pp 71–85

    Google Scholar 

  • Tsunewaki K, Yamada S, Mori N (1990) Genetical studies on a Tibetan semi-wild wheat, Triticum aestivum ssp. tibetanum. Jpn J Genet 65:353–365

    Article  Google Scholar 

  • Urbano M, Resta P, Benedettelli SB, Blanco A (1988) A Dasypyrum villosum (L.) Candargy chromosome related to homoeologous group 3 of wheat. In: Miller TE, Koebner RMD (eds) Proc 7th Int Wheat Genet Symp, vol 1. Institute of Plant Science Research, Cambridge, UK, pp 169–173

    Google Scholar 

  • Watanabe N, Sugiyama K, Yamagishi Y, Sakata Y (2002) Comparative telosomic mapping of homoeologous genes for brittle rachis in tetraploid and hexaploid wheats. Hereditas 137:180–185

    Article  Google Scholar 

  • Yang YC, Tuleen NA, Hart GE (1996) Isolation and identification of Triticum aestivum L. em. Thell. cv. Chinese Spring–T. peregrinum Hackel disomic addition lines. Theor Appl Genet 92:591–598

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. Moshe Feldman and Jan Dvorak for supplying plant material; Drs. H.W. Bass, M.D. Gale, A. Graner, A. Kleinhofs, M.E. Sorrells, and N. Stein for providing RFLP probes; and John Raupp for excellent technical assistance. This paper is contribution number 05-302-J from the Kansas Agricultural Experiment Station.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bikram S. Gill.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, W., Gill, B.S. Multiple genetic pathways for seed shattering in the grasses. Funct Integr Genomics 6, 300–309 (2006). https://doi.org/10.1007/s10142-005-0015-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-005-0015-y

Keywords

Navigation