Skip to main content
Log in

Glucoamylases: structural and biotechnological aspects

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Glucoamylases, one of the main types of enzymes involved in starch hydrolysis, are exo-acting enzymes that release consecutive glucose units from the non-reducing ends of starch molecules. Glucoamylases are microbial enzymes, present in bacteria, archaea, and fungi but not in plants and animals. Structurally, they are classified in family 15 of glycoside hydrolases and characterised by the invariable presence of a catalytic domain with (α/α)6-fold, often bound to a non-catalytic domain of diverse origin and function. Fungal glucoamylases are biotechnologically very important as they are used industrially in large amounts and have been extensively studied during the past 30 years. Prokaryotic glucoamylases are of biotechnological relevance for being generally thermophilic enzymes, active at elevated temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adam AC, Latorre-Garcia L, Polaina J (2004) Structural analysis of glucoamylase encoded by the STA1 gene of Saccharomyces cerevisiae (var. diastaticus). Yeast 21:379–388

    Article  CAS  Google Scholar 

  • Aleshin A, Golubev A, Firsov LM, Honzatko RB (1992) Crystal structure of glucoamylase from Aspergillus awamori var. X100 to 2.2-Å resolution. J Biol Chem 267:19291–19298

    CAS  Google Scholar 

  • Aleshin AE, Feng PH, Honzatko RB, Reilly PJ (2003) Crystal structure and evolution of prokaryotic glucoamylase. J Mol Biol 327:61–73

    Article  CAS  Google Scholar 

  • Allen MJ, Coutinho PM, Ford (1998) Stabilization of Aspergillus awamori glucoamylase by proline substitution and combining stabilizing mutations. Protein Eng 11:783–788

    Article  CAS  Google Scholar 

  • Boraston AB, Bolam DN, Gilbert HJ, Davies GJ (2004) Carbohydrate-binding modules: fine-tuning polysaccharide recognition. Biochem J 382:769–781

    Article  CAS  Google Scholar 

  • Bott R, Saldajeno M, Cuevas W, Ward D, Scheffers M, Aehle W, Karkehabadi S, Sandgren M, Hansson H (2008) Three-dimensional structure of an intact glycoside hydrolase family 15 glucoamylase from Hypocrea jecorina. Biochemistry 47:5746–5754

    Article  CAS  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active ENZYMES database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:D233–D238

    Article  CAS  Google Scholar 

  • Christiansen C, Hachem MA, Janecek S, Vikso-Nielsen A, Blennow A, Svensson B (2009) The carbohydrate-binding module family 20—diversity, structure, and function. FEBS J 276:5006–5029

    Article  CAS  Google Scholar 

  • Coutinho PM, Reilly PJ (1997) Glucoamylase structural, functional and evolutionary relationships. Protein Struct Funct Genet 29:334–347

    Article  CAS  Google Scholar 

  • Dock C, Hess M, Antranikian G (2008) A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum. Appl Microbiol Biotechnol 78:105–114

    Article  CAS  Google Scholar 

  • Fagerström R (1994) Purification and specificity of recombinant Hormoconis resinae glucoamylase P and endogenous glucoamylase from Trichoderma reesei. Enzyme Microb Technol 16:36–42

    Article  Google Scholar 

  • Fierobe HP, Stoffer BB, Frandsen TP, Svensson B (1996) Mutational modulation of substrate bond-type specificity and thermostability of glucoamylase from Aspergillus awamori by replacement with short homologue active site sequences and thiol/disulfide engineering. Biochemistry 35:8696–8704

    Article  CAS  Google Scholar 

  • Hostinová E, Gašperík J (2010) Yeast glucoamylases: molecular-genetic and structural characterization. Biol Sect Cell Mol Biol 65:559–568

    Google Scholar 

  • Jorgensen AD, Nohr J, Kastrup JS, Gajhede M, Sigurskjold B, Sauer J, Svergun DI, Svensson B, Vestergaard B (2008) Small angle X-ray studies reveal that Aspergillus niger glucoamylase has a defined extended conformation and can form dimmers in solution. J Biol Chem 283:14772–14780

    Article  CAS  Google Scholar 

  • Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW, Park KH (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70:3933–3940

    Article  CAS  Google Scholar 

  • Kim JH, Kim HR, Lim MH, Ko HM, Chin JE, Lee HB, Kim IC, Bai S (2010) Construction of a direct starch-fermenting industrial strain of Saccharomyces cerevisiae producing glucoamylase, α-amylase and debranching enzyme. Biotechnol Lett 32:713–719

    Article  CAS  Google Scholar 

  • Kumar P, Satyanarayana T (2009) Microbial glucoamylases: characteristics and applications. Crit Rev Biotechnol 29:225–255

    Article  CAS  Google Scholar 

  • Latorre-Garcia L, Adam AC, Manzanares P, Polaina J (2005) Improving the amylolytic activity of Saccharomyces cerevisiae glucoamylase by the addition of a starch binding domain. J Biotechnol 118:167–176

    Article  CAS  Google Scholar 

  • Leemhuis H, Kelly RM, Dijkhuizen L (2010) Engineering of cyclodextrin glucanotransferases and the impact for biotechnological applications. Appl Microbiol Biotechnol 85:823–835

    Article  CAS  Google Scholar 

  • Li Y, Coutinho PM, Ford N (1998) Effect on thermostability and catalytic activity of introducing disulfide bonds into Aspergillus awamori glucoamylase. Protein Eng 11:661–667

    Article  CAS  Google Scholar 

  • Lin SC, Liu WT, Liu SH, Chou WI, Hsiung BK, Lin IP, Sheu CC, Chang MDT (2007) Role of the linker region in the expression of Rhyzopus oryzae glucoamylase. BMC Biochem 8:9

    Article  Google Scholar 

  • Liu HL, Wang WC (2003) Protein engineering to improve the thermostability of glucoamylase from Aspergillus awamori based on molecular dynamics simulations. Protein Eng 16:19–25

    Article  Google Scholar 

  • Liu HL, Doleyres Y, Coutinho PM, Ford C, Reilly PJ (2000) Replacement and deletion mutations in the catalytic domain and belt region of Aspergillus awamori glucoamylase to enhance thermostability. Protein Eng 13:655–659

    Article  CAS  Google Scholar 

  • Liu YN, Lai YT, Chou WI, Chang MDT, Lyu PC (2007) Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. Biochem J 403:21–30

    Article  CAS  Google Scholar 

  • Machovič M, Janeček S (2006a) The evolution of putative starch-binding domains. FEBS Lett 580:6349–6356

    Article  Google Scholar 

  • Machovič M, Janeček S (2006b) Starch-binding domains in the post-genome era. Cell Mol Life Sci 63:2710–2724

    Article  Google Scholar 

  • Marín-Navarro J, Gurgu L, Alamar S, Polaina J (2010) Structural and functional analysis of hybrid enzymes generated by domain shuffling between Saccharomyces cerevisiae (var. diastaticus) Sta1 glucoamylase and Saccharomycopsis fibuligera Bgl1 β-glucosidase. Appl Microbiol Biotechnol. doi:10.1007/s00253-010-2845-3

  • McCarter JD, Withers SG (1994) Mechanisms of enzymatic glycoside hydrolysis. Curr Opin Struct Biol 4:885–892

    Article  CAS  Google Scholar 

  • Ohnishi H, Kitamura H, Minowa T, Sakai H, Ohta T (1992) Molecular cloning of a glucoamylase gene from a thermophile Clostridium and kinetics of the cloned enzyme. Eur J Biochem 207:413–418

    Article  CAS  Google Scholar 

  • Rodgers CJ, Blanford CF, Giddens SR, Skamnioti P, Armstrong FA, Gurr SJ (2010) Designer laccases: a vogue for high-potential fungal enzymes? Trends Biotechnol 8:63–72

    Article  Google Scholar 

  • Rodríguez-Sanoja R, Oviedo N, Sánchez S (2005) Microbial starch-binding domain. Curr Opin Microbiol 8:260–267

    Article  Google Scholar 

  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Migorodskaya E, Harrison M, Roepstorff P, Svensson B (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293

    Article  CAS  Google Scholar 

  • Ševčik J, Solovicová A, Hostinová E, Gašperík J, Wilson K, Dauter Z (1998) Structure of glucoamylase from Saccharomycopsis fibuligera at 1.7 Å resolution. Acta Crystallogr Sect D 54:854–866

    Article  Google Scholar 

  • Ševčik J, Hostinová E, Solovicová A, Gašperík J, Dauter Z, Wilson KS (2006) Structure of the complex of a yeast glucoamylase with acarbose reveals the presence of a raw starch binding site on the catalytic domain. FEBS J 273:2161–2171

    Article  Google Scholar 

  • Sorimachi K, Jacks AJ, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1996) Solution structure of the granular starch binding domain of glucoamylase from Aspergillus niger by nuclear magnetic resonance spectroscopy. J Mol Biol 259:970–987

    Article  CAS  Google Scholar 

  • Sorimachi K, Le Gal-Coëffet MF, Williamson G, Archer DB, Williamson MP (1997) Solution structure of the granular starch binding domain of Aspergillus niger glucoamylase bound to ß-cyclodextrin. Structure 5:647–661

    Article  CAS  Google Scholar 

  • Svensson B, Larsen K, Svendsen I, Boel E (1983) The complete amino acid sequence of the glycoprotein, glucoamylase G1, from Aspergillus niger. Carlsberg Res Commun 48:529–544

    Article  CAS  Google Scholar 

  • Svensson B, Larsen K, Gunnarsson A (1986) Characterization of glucoamylase G2 from Aspergillus niger. Eur J Biochem 154:497–502

    Article  CAS  Google Scholar 

  • Svensson B, Hespersen H, Sierks MR, MacGregor EA (1989) Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. Biochem J 264:309–311

    CAS  Google Scholar 

  • Synowiecki J (2007) The use of starch processing enzymes in the food industry. In: Polaina J, MacCabe AP (eds) Industrial enzymes: structure, function and applications. Springer, Dordrecht, pp 19–34

    Google Scholar 

  • Tung JY, Chang MDT, Chou WI, Liu YY, Yeh YH, Chang FY, Lin SC, Qiu ZL, Sun YJ (2008) Crystal structures of the starch-binding domain from Rhyzopus oryzae glucoamylase reveal a polysaccharide-binding path. Biochem J 416:27–36

    Article  CAS  Google Scholar 

  • Uotsu-Tomita R, Tonozuka T, Sakai H, Sakano Y (2001) Novel glucoamylasetype enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alphaamylase genes. Appl Microbiol Biotechnol 56:465–473

    Article  CAS  Google Scholar 

  • Voronovsky AY, Rohulya OV, Abbas CA, Sibirny AA (2009) Development of strains of the thermotolerant yeast Hansenula polymorpha capable of alcoholic fermentation of starch and xylan. Metab Eng 11:234–242

    Article  CAS  Google Scholar 

  • Wang Y, Fuchs E, da Silva R, McDaniel A, Seibel J, Ford C (2006) Improvement of Aspergillus niger glucoamylase thermostability by directed evolution. Starch/Starke 58:501–508

    Article  CAS  Google Scholar 

  • Yamada R, Tanaka T, Ogino C, Fukuda H, Kondo A (2010) Novel strategy for yeast construction using δ-integration and cell fusion to efficiently produce ethanol from raw starch. Appl Microbiol Biotechnol 85:1491–1498

    Article  CAS  Google Scholar 

  • Yamakawa S, Yamada R, Tanaka T, Ogino C, Kondo A (2010) Repeated batch fermentation from raw starch using a maltose transporter and amylase expressing diploid yeast strain. Appl Microbiol Biotechnol 87:109–115

    Article  CAS  Google Scholar 

  • Zheng Y, Xue Y, Zhang Y, Zhou C, Schwaneberg U, Ma Y (2010) Cloning, expression, and characterization of a thermostable glucoamylase from Thermoanaerobacter tengcongensis MB4. Appl Microbiol Biotechnol 87:225–233

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was funded by Spanish Ministerio de Ciencia e Innovación grant BIO2007-6708-C04-02.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Polaina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Marín-Navarro, J., Polaina, J. Glucoamylases: structural and biotechnological aspects. Appl Microbiol Biotechnol 89, 1267–1273 (2011). https://doi.org/10.1007/s00253-010-3034-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-010-3034-0

Keywords

Navigation