Skip to main content

Advertisement

Log in

Glycogen debranching pathway deduced from substrate specificity of glycogen debranching enzyme

  • Original Article
  • Published:
Glycoconjugate Journal Aims and scope Submit manuscript

Abstract

Glycogen debranching enzyme (GDE) is bifunctional in that it exhibits both 4-α-glucanotransferase and amylo-α-1,6-glucosidase activity at two distinct catalytic sites. GDE converts the phosphorylase-limit biantennary branch [G-G-G-G-(G-G-G-G↔)G-G- residue, where G = d-glucose, hyphens represent α-1,4-glycosidic bonds, and the double-headed arrow represents an α-1,6-glycosidic bond] into a linear maltooligosyl residue, which is then subjected to phosphorylase, and glycogen degradation continues. The prevailing hypothesis regarding the glycogen debranching pathway was that 4-α-glucanotransferase converts the phosphorylase-limit biantennary branch into the G-G-G-G-G-G-G-(G↔)G-G- residue and amylo-α-1,6-glucosidase cleaves the remaining α-1,6-linked G residue. In the present study, we analyzed the substrate specificities of 4-α-glucanotransferase and amylo-α-1,6-glucosidase using fluorogenic biantennary dextrins such as G-G-G-G-(G-G-G-G↔)G-G-GPA (F4/4/2; where GPA = 1-deoxy-1-[(2-pyridyl)amino]-d-glucitol), G-(G-G-G-G↔)G-G-GPA (F1/4/2), and G-G-G-G-G-G-G-(G↔)G-G-GPA (F7/1/2). Contrary to the prevailing hypothesis, the main branch of F4/4/2 was an important donor substrate component of 4-α-glucanotransferase and did not serve as an acceptor substrate. However, when G-G-G-G-G-GPA was added to the mixture, it successfully accepted a maltotriosyl (G3-) residue from F4/4/2. In addition, amylo-α-1,6-glucosidase exhibited strong activity towards G-G-G-G-(G↔)G-G-GPA but weak activity towards F7/1/2. Furthermore, the debranching activity of GDE towards phosphorylase-limit glycogen substantially increased when methyl α-maltooligosides with lengths equal to or greater than that of methyl α-maltopentaoside (G5-OCH3) were added to the enzyme reaction mixture. Based on these results, we propose the following macroscopic debranching pathway: Via 4-α-glucanotransferase, the G3- residue of the donor branch is transferred to a long (n ≥ 5) linear Gn- residue linked to a different branching G residue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

Data supporting the findings of the present study are available from the corresponding author upon reasonable request.

Code availability

Not applicable.

References

  1. Roach, P.J., Depaoli-Roach, A.A., Hurley, T.D., Tagliabracci, V.S.: Glycogen and its metabolism: some new developments and old themes. Biochem. J. 441, 763–787 (2012)

    Article  CAS  Google Scholar 

  2. Prats, C., Graham, T.E., Shearer, J.: The dynamic life of the glycogen granule. J. Biol. Chem. 293, 7089–7098 (2018)

    Article  CAS  Google Scholar 

  3. Berg, J.M., Tymoczko, J.L., Gatto Jr., G.J., Stryer, L.: Biochemistry (9th edition) pp. 679–707. W.H. Freeman and Company, New York (2019).

  4. Vollhardt, K.P.C., Schore, N.E.: Organic Chemistry; Structure and Function (7th edition) pp. 1103–1110. W.H. Freeman and Company, New York (2014)

  5. Nelson, D.L., Cox, M.M.: Lehninger Principles of Biochemistry (7th international edition) pp. 601–608. Macmillan Higher Education, Basingstoke (2017)

  6. Voet, D., Voet, J.D.: Biochemistry (3rd edition) pp. 626–656. John Wiley and Sons, Inc., Hoboken (2004)

  7. Conn, E.E., Stumpf, P.K.: Outlines of Biochemistry (4th edition) pp. 279–316. John Wiley and Sons, Inc., Hoboken (1976)

  8. Papachristodoulou, D., Snape, A., Elliott, W.H., Elliott, D.C.: Biochemistry and Molecular Biology (5th edition) pp. 173–190. Oxford University Press, Oxford (2014)

  9. Melendez-Hevia, E., Waddell, T.G., Shelton, E.D.: Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem. J. 295, 477–483 (1993)

    Article  CAS  Google Scholar 

  10. Sentner, C.P., Hoogeveen, I.J., Weinstein, D.A., Santer, R., Murphy, E., McKiernan, P.J., Steuerwald, U., Beauchamp, N.J., Taybert, J., Laforêt, P., Petit, F.M., Hubert, A., Labrune, P., Smit, G.P.A., Derks, T.G.J.: Glycogen storage disease type III: diagnosis, genotype, management, clinical course and outcome. J. Inherit. Metab. Dis. 39, 697–704 (2016)

    Article  CAS  Google Scholar 

  11. Nakayama, A., Yamamoto, K., Tabata, S.: Identification of the catalytic residues of bifunctional glycogen debranching enzyme. J. Biol. Chem. 276, 28824–28828 (2001)

    Article  CAS  Google Scholar 

  12. Zhai, L., Feng, L., Xia, L., Yin, H., Xiang, S.: Crystal structure of glycogen debranching enzyme and insights into its catalysis and disease-causing mutations. Nat. Commun. 7, 11229 (2016)

    Article  CAS  Google Scholar 

  13. Makino, Y., Omichi, K.: Acceptor specificity of 4-α-glucanotransferases of mammalian glycogen debranching enzymes. J. Biochem. 139, 535–541 (2006)

    Article  CAS  Google Scholar 

  14. Yamamoto, E., Makino, Y., Omichi, K.: Active site mapping of amylo-α-1,6-glucosidase in porcine liver glycogen debranching enzyme using fluorogenic 6-O-α-glucosyl-maltooligosaccharides. J. Biochem. 141, 627–634 (2007)

    Article  CAS  Google Scholar 

  15. Sakaguchi, M., Makino, Y., Matsubara, H.: New approach to prepare fluorogenic branched dextrins for assaying glycogen debranching enzyme. Glycoconj. J. 37, 667–679 (2020)

    Article  Google Scholar 

  16. Fujii, Y., Makino, Y., Sato, M.: A new interpretation of sulfate activation of rabbit muscle glycogen phosphorylase. Glycoconj. J. 35, 299–309 (2018)

    Article  CAS  Google Scholar 

  17. Hii, S.L., Tan, J.S., Ling, C.L., Ariff, A.B.: Pullulanase: role in starch hydrolysis and potential industrial applications. Enzyme Res. 921362 (2012)

  18. Fromm, H.J.: Initial rate enzyme kinetics. pp. 1–82. Springer, Berlin (1975)

  19. Watanabe, Y., Makino, Y., Omichi, K.: Activation of 4-α-glucanotransferase activity of porcine liver glycogen debranching enzyme with cyclodextrins. J. Biochem. 140, 135–140 (2006)

    Article  CAS  Google Scholar 

  20. Yamamoto, E., Watanabe, Y., Makino, Y., Omichi, K.: Inspection of the activator binding site for 4-α-glucanotransferase in porcine liver glycogen debranching enzyme with fluorogenic dextrins. J. Biochem. 145, 585–590 (2009)

    Article  CAS  Google Scholar 

  21. Taylor, C., Cox, A.J., Kernohan, J.C., Cohen, P.: Debranching enzyme from rabbit skeletal muscle: purification, properties and physiological role. Eur. J. Biochem. 51, 105–115 (1975)

    Article  CAS  Google Scholar 

  22. Gordon, R.B., Brown, D.H., Brown, B.I.: Preparation and properties of the glycogen-debranching enzyme from rabbit liver. Biochim. Biophys. Acta 289, 97–107 (1972)

    Article  CAS  Google Scholar 

  23. Gutman, A., Ben-Bassat, Y., Schramm, H., Lilling, S.: 64 assay of amylo-1,6-glucosidase-transferase activity by release of glucose from phosphorylase limit dextrin - a reassessment. Pediatr. Res. 20, 1044 (1986)

    Article  Google Scholar 

  24. Syson, K., Stevenson, C.E.M., Miah, F., Barclay, J.E., Tang, M., Gorelik, A., Rashid, A.M., Lawson, D.M., Bornemann, S.: Ligand-bound structures and site-directed mutagenesis identify the acceptor and secondary binding sites of Streptomyces coelicolor maltosyltransferase GlgE. J. Biol. Chem. 291, 21531–21540 (2016)

    Article  CAS  Google Scholar 

  25. Hu, X., Legler, P.M., Khavrutskii, I., Scorpio, A., Compton, J.R., Robertson, K.L., Friedlander, A.M., Wallqvist, A.: Probing the donor and acceptor substrate specificity of the γ-glutamyl transpeptidase. Biochemistry 51, 1199–1212 (2012)

    Article  CAS  Google Scholar 

  26. Light, S.H., Cahoon, L.A., Mahasenan, K.V., Lee, M., Boggess, B., Halavaty, A.S., Mobashery, S., Freitag, N.E., Anderson, W.F.: Transferase versus hydrolase: the role of conformational flexibility in reaction specificity. Structure. 25, 295–304 (2017)

    Article  CAS  Google Scholar 

  27. Mili, A., Ben Charfeddine, I., Mamaï, O., Cherif, W., Adala, L., Amara, A., Pagliarani, S., Lucchiari, S., Ayadi, A., Tebib, N., Harbi, A., Bouguila, J., H’Mida, D., Saad, A., Limem, K., Comi, G.P., Gribaa, M.: Molecular and biochemical characterization of Tunisian patients with glycogen storage disease type III. J. Hum. Genet. 57, 170–175 (2012)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Prof. Takaaki Miyaji and Ms. Asako Kawakami at the Department of Genomics & Proteomics of the Advanced Science Research Center of Okayama University for performing MALDI-TOF MS on the fluorogenic biantennary dextrins.

Funding

The authors did not receive support from any organization for the submitted work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yasushi Makino.

Ethics declarations

Ethics approval

This work does not include any studies involving humans or animals.

Consent to participate

Not applicable.

Consent for publication

Not applicable.

Conflicts of interest

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 427 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikeda, A., Makino, Y. & Matsubara, H. Glycogen debranching pathway deduced from substrate specificity of glycogen debranching enzyme. Glycoconj J 39, 345–355 (2022). https://doi.org/10.1007/s10719-022-10046-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10719-022-10046-y

Keywords

Navigation