Skip to main content

Abstract

The hydrolysis of starch is an important process used in various industries, including food, pharmaceuticals, and biofuels. It involves breaking starch molecules into simpler sugars, such as glucose and maltose, using enzymes or acid hydrolysis. Enzymatic hydrolysis is typically preferred due to its specificity and mild reaction conditions, while acid hydrolysis is faster but can result in a lower-quality product due to the formation of unwanted by-products. Various parameters, including pH, temperature, enzyme concentration, and substrate concentration, can affect the conversion of starch into reducing sugars. Also, these parameters can greatly affect the efficiency and yield of the hydrolysis process and must be carefully controlled to achieve optimal results. Hydrolyzed starch is highly soluble, stable, and easily fermentable. These unique properties make it a valuable ingredient in various applications, especially in food and beverages.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdorreza, M., Robal, M., Cheng, L., Tajul, A., & Karim, A. (2012). Physicochemical, thermal, and rheological properties of acid-hydrolyzed sago (Metroxylonsagu) starch. LWT-Food Science and Technology, 46(1), 135–141.

    Article  CAS  Google Scholar 

  • Acosta-Pavas, J. C., Alzate-Blandon, L., & Ruiz-Colorado, A. A. (2020). Enzymatic hydrolysis of wheat starch for glucose syrup production. DYNA (Colombia), 87(214), 173–182. https://doi.org/10.15446/DYNA.V87N214.82669

    Article  CAS  Google Scholar 

  • Agrawal, M., Pradeep, S., Chandraraj, K., & Gummadi, S. N. (2005). Hydrolysis of starch by amylase from Bacillus sp. KCA102: A statistical approach. Process Biochemistry, 40(7), 2499–2507. https://doi.org/10.1016/j.procbio.2004.10.006

    Article  CAS  Google Scholar 

  • Almeida, R. L. J., dos Santos Pereira, T., de Andrade Freire, V., Santiago, Â. M., Oliveira, H. M. L., de Sousa Conrado, L., & de Gusmão, R. P. (2019). Influence of enzymatic hydrolysis on the properties of red rice starch. International Journal of Biological Macromolecules, 141, 1210–1219. https://doi.org/10.1016/j.ijbiomac.2019.09.072

    Article  CAS  PubMed  Google Scholar 

  • Awolu, O. O., & Olofinlae, S. J. (2016). Physico-chemical, functional and pasting properties ofnative and chemically modified water yam (Dioscoreaalata) starch and production of water yamstarch-based yoghurt. Starch, 68(7–8), 719–726.

    Article  CAS  Google Scholar 

  • Azmi, A. S., Yusuf, N., Jimat, D. N., & Puad, N. I. M. (2016). Co-production of lactic acid and ethanol using Rhizopus Sp. from hydrolyzed inedible cassava starch and leaves. IIUM Engineering Journal, 17(2), 1–10.

    Article  Google Scholar 

  • Azmi, A. S., Malek, M. I. A., & Puad, N. I. M. (2017). A review on acid and enzymatic hydrolyses of sago starch. International Food Research Journal, 24(December), 265–273.

    Google Scholar 

  • Bej, B., Basu, R. K., & Ash, S. N. (2008). Kinetic study on acid-catalyzed hydrolysis of starch. Journal of Scientific and Industrial Research, 67, 295–298.

    CAS  Google Scholar 

  • Blazek, J., & Gilbert, E. P. (2010). Effect of enzymatic hydrolysis on native starch granule structure. Biomacromolecules, 11(12), 3275–3289. https://doi.org/10.1021/bm101124t

    Article  CAS  PubMed  Google Scholar 

  • Bryjak, J. (2003). Glucoamylase, α-amylase and β-amylase immobilisation on acrylic carriers. Biochemical Engineering Journal, 16(3), 347–355. https://doi.org/10.1016/S1369-703X(03)00114-1

    Article  CAS  Google Scholar 

  • Carrasco, M., Alcaíno, J., Cifuentes, V., & Baeza, M. (2017). Purification and characterization of a novel α-glucosidase from an Antarctic yeast Dioszegiafristingensis isolate. Amylase, 1(1), 50–58. https://doi.org/10.1515/amylase-2017-0005

    Article  Google Scholar 

  • Chang, Y. H., Lin, J. H., & Chang, S. Y. (2006). Physicochemical properties of waxy and normal corn starches treated in different anhydrous alcohols with hydrochloric acid. Food Hydrocolloids, 20(2–3 SPEC. ISS), 332–339. https://doi.org/10.1016/j.foodhyd.2005.02.024

    Article  CAS  Google Scholar 

  • Chang, Y. H., Lin, J. H., & Pan, C. L. (2010). Type and concentration of acid on solubility and molecular size of acid-methanol-treated rice starches differing in amylose content. Carbohydr Polym, 79(3), 762–768. https://doi.org/10.1016/j.carbpol.2009.10.002

    Article  CAS  Google Scholar 

  • Chen, G., & Zhang, B. (2012). Hydrolysis of granular corn starch with controlled pore size. Journal of Cereal Science, 56(2), 316–320. https://doi.org/10.1016/j.jcs.2012.01.011

    Article  CAS  Google Scholar 

  • Chung, H. J., Hoover, R., & Liu, Q. (2009). The impact of single and dual hydrothermal modifications on the molecular structure and physicochemical properties of normal corn starch. International Journal of Biological Macromolecules, 44(2), 203–210. https://doi.org/10.1016/j.ijbiomac.2008.12.007

    Article  CAS  PubMed  Google Scholar 

  • da Costa Luchiari, I., Cedeno, F. R. P., de Macêdo Farias, T. A., Picheli, F. P., de Paula, A. V., Monti, R., & Masarin, F. (2021). Glucoamylase immobilization in corncob powder: Assessment of enzymatic hydrolysis of starch in the production of glucose. Waste and Biomass Valorization, 12(10), 5491–5504. https://doi.org/10.1007/s12649-021-01379-0

    Article  CAS  Google Scholar 

  • Das, R., & Kayastha, A. M. (2019). Enzymatic hydrolysis of native granular starches by a new β-amylase from peanut (Arachishypogaea). Food Chemistry, 276, 583–590. https://doi.org/10.1016/j.foodchem.2018.10.058

    Article  CAS  PubMed  Google Scholar 

  • Daudt, R. M., Külkamp-Guerreiro, I. C., Cladera-Olivera, F., Thys, R. C. S., & Marczak, L. D. F. (2014). Determination of properties of pinhão starch: Analysis of its applicabilityas pharmaceutical excipient. Industrial Crops and Products, 52, 420–429.

    Article  CAS  Google Scholar 

  • De Siqueira, G. L. D. A., Hornung, P. S., da Silveira, A. C., da Silveira Lazzarotto, S. R., do Prado Cordoba, L., Schnitzler, E., & Lazzarotto, M. (2017). Impact of treatment with HCL/alcoholic in the modification of corn starch. Journal of Thermal Analysis and Calorimetry, 129(3), 1705–1713.

    Article  Google Scholar 

  • De Souza, I. A., Orsi, D. C., Gomes, A. J., & Lunardi, C. N. (2019). Enzymatic hydrolysis of starch into sugars is influenced by microgel assembly. Biotechnology Reports, 22, e00342. https://doi.org/10.1016/j.btre.2019.e00342

    Article  PubMed  PubMed Central  Google Scholar 

  • Drosos, A., Boura, K., Dima, A., Soupioni, M., Nigam, P. S., Kanellaki, M., & Koutinas, A. A. (2021). A cell-factory model of Saccharomyces cerevisiae based on bacterial cellulose without GMO for consolidated bioprocessing of starch. Food and Bioproducts Processing, 128, 202–214. https://doi.org/10.1016/j.fbp.2021.05.006

    Article  CAS  Google Scholar 

  • Dura, A., Błaszczak, W., & Rosell, C. M. (2014). Functionality of porous starch obtained by amylase or amyloglucosidase treatments. Carbohydr PolymCarbohydrate Polymers, 101(1), 837–845. https://doi.org/10.1016/j.carbpol.2013.10.013

    Article  CAS  Google Scholar 

  • Dziedzic, S. Z., & Kearsley, M. W. (1995). Handbook of starch hydrolysis products and their derivatives. Springer.

    Google Scholar 

  • Eleazu, C. O. (2016). The concept of low glycemic index and glycemic load foods as panacea for type 2 diabetes mellitus; prospects, challenges and solutions. African Health Sciences, 16(2), 468–479. https://doi.org/10.4314/ahs.v16i2.15

    Article  PubMed  PubMed Central  Google Scholar 

  • Falade, K. O., & Okafor, C. A. (2013). Physicochemical properties of five cocoyams (Colocasia esculenta and Xanthosoma sagittifolium) starches. Food Hydrocolloids, 30(1), 173–181.

    Article  CAS  Google Scholar 

  • Gaquere-Parker, A., Taylor, T., Hutson, R., Rizzo, A., Folds, A., Crittenden, S., et al. (2018). Low-frequency ultrasonic-assisted hydrolysis of starch in the presence of α-amylase. Ultrasonics Sonochemistry, 41(October 2017), 404–409. https://doi.org/10.1016/j.ultsonch.2017.10.007

    Article  CAS  PubMed  Google Scholar 

  • Govindasamy, S., Campanella, O. H., & Oates, C. G. (1995). Influence of extrusion variables on subsequent saccharification behaviour of sago starch. Food Chemistry, 54(3), 289–296. https://doi.org/10.1016/0308-8146(95)00049-O

    Article  CAS  Google Scholar 

  • Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., et al. (2019a). Advances in chemical modifications of starches and their applications. Carbohydrate Research, 476(November 2018), 12–35. https://doi.org/10.1016/j.carres.2019.02.007

    Article  CAS  PubMed  Google Scholar 

  • Haq, F., Yu, H., Wang, L., Teng, L., Haroon, M., Khan, R. U., et al. (2019b). Advances in chemical modifications of starches and their applications. Carbohydrate Research, 476(February), 12–35.

    Article  CAS  PubMed  Google Scholar 

  • Hii, S. L., Tan, J. S., Ling, T. C., & Ariff, A. B. (2012). Pullulanase: Role in starch hydrolysis and potential industrial applications. Enzyme Research, 2012. https://doi.org/10.1155/2012/921362

  • Hittinger, C. T., Steele, J. L., & Ryder, D. S. (2018). Diverse yeasts for diverse fermented beverages and foods. Current Opinion in Biotechnology, 49(Figure 1), 199–206. https://doi.org/10.1016/j.copbio.2017.10.004

    Article  CAS  PubMed  Google Scholar 

  • Horváthovái, V., Janeček, S., & Ǒturdík, E. (2000). Amylolytic enzymes: Their specificities, origins and properties. Biologia, 55(6), 605–615.

    Google Scholar 

  • Hoseinpour, H., Karimi, K., Zilouei, H., & Taherzadeh, M. J. (2010). Simultaneous pretreatment of lignocellulose and hydrolysis of starch in mixtures to sugars. Bioresources, 5(4), 2457–2469.

    Article  CAS  Google Scholar 

  • Hua, X., & Yang, R. (2016). Enzymes in starch processing. In M. Chandrasekaran (Ed.), Enzymes in food and beverage processing (pp. 139–170). CRC Press.

    Google Scholar 

  • Huber, K. C., & Bumiller, J. N. (2000). Channels of maize and sorghum starch granules. Carbohydrate Polymers, 41(3), 269–276.

    Article  CAS  Google Scholar 

  • Jiang, S., Liu, C., Han, Z., Xiong, L., & Sun, Q. (2016). Evaluation of rheological behaviour of starch nanocrystals by acid hydrolysis and starch nanoparticles by self-assembly: A comparative study. Food Hydrocolloids, 52, 914–922.

    Article  CAS  Google Scholar 

  • Jung, D., Park, C., Kim, H., Gyu, T., Lee, B., Baik, M., et al. (2022). Food hydrocolloids enzymatic modification of potato starch by amylosucrase according to reaction temperature: Effect of branch-chain length on structural, physicochemical, and digestive properties. Food Hydrocolloids, 122(August 2021), 107086. https://doi.org/10.1016/j.foodhyd.2021.107086

    Article  CAS  Google Scholar 

  • Kaur, M., Sandhu, K. S., Singh, N., & Lim, S. T. (2011). Amylose content, molecular structure, physicochemical properties, and in vitro digestibility of starches from different mungbean (Vigna radiate L.) cultivars. Starch, 63, 709–716.

    Article  CAS  Google Scholar 

  • Khamkeaw, A., & Phisalaphong, M. (2016). Hydrolysis of cassava starch by co-immobilized multi-microorganisms of Loog-pang (Thai rice cake starter) for ethanol fermentation. Food Science and Biotechnology, 25(2), 509–516. https://doi.org/10.1007/s10068-016-0071-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klinke, H. B., Thomsen, A., & Ahring, B. K. (2004). Inhibition of ethanol-producing yeast and bacteria by degradation products produced during pre-treatment of biomass. Applied Microbiology and Biotechnology, 66(1), 10–26.

    Article  CAS  PubMed  Google Scholar 

  • Konsoula, Z., & Liakopoulou-Kyriakides, M. (2007). Co-production of α-amylase and β-galactosidase by Bacillus subtilis in complex organic substrates. Bioresource Technology, 98(1), 150–157. https://doi.org/10.1016/j.biortech.2005.11.001

    Article  CAS  PubMed  Google Scholar 

  • Lawal, O. S. (2011). Hydroxypropylation of pigeon pea (Cajanuscajan) starch: Preparation, functional characterizations and enzymatic digestibility. LWT – Food Science and Technology, 44(3), 771–778.

    Article  CAS  Google Scholar 

  • Lin, J. H., Lee, S. Y., & Chang, Y. H. (2003). Effect of acid-alcohol treatment on the molecular structure and physicochemical properties of maize and potato starches. Carbohydrate Polymers, 53(4), 475–482. https://doi.org/10.1016/S0144-8617(03)00145-0

    Article  CAS  Google Scholar 

  • Lin, L., Guo, D., Huang, J., Zhang, X., Zhang, L., & Wei, C. (2016). Molecular structure and enzymatic hydrolysis properties of starches from high-amylose maize inbred lines and their hybrids. Food Hydrocolloids, 58, 246–254. https://doi.org/10.1016/j.foodhyd.2016.03.001

    Article  CAS  Google Scholar 

  • Liu, S.-n., Han, Y., & Zhou, Z.-J. (2011). Lactic acid bacteria in traditional fermented Chinese foods. Food Research International, 44(3), 643–651. https://doi.org/10.1016/j.foodres.2010.12.034

    Article  CAS  Google Scholar 

  • Liu, G., Hong, Y., Gu, Z., Li, Z., & Cheng, L. (2015). Pullulanase hydrolysis behaviours and hydrogel properties ofdebranched starches from different sources. Food Hydrocolloids, 45, 351–360. https://doi.org/10.1016/j.foodhyd.2014.12.006

    Article  CAS  Google Scholar 

  • Ma, W. P., & Robyt, J. F. (1987). Preparation and characterization of soluble starches having different molecular sizes and composition, by acid hydrolysis in different alcohols. Carbohydrate Research, 166(2), 283–297. https://doi.org/10.1016/0008-6215(87)80064-2

    Article  CAS  Google Scholar 

  • Miao, M., Jiang, B., Zhang, T., Jin, Z., & Mu, W. (2011a). Impact of mild acid hydrolysis on structure and digestion properties of waxy maize starch. Food Chemistry, 126(2), 506–513.

    Article  CAS  Google Scholar 

  • Miao, M., Zhang, T., Mu, W., & Jiang, B. (2011b). Structural characterizations of waxy maize starch residue following in vitro pancreatin and amyloglucosidase synergistic hydrolysis. Food Hydrocolloids, 25(2), 214–220. https://doi.org/10.1016/j.foodhyd.2009.12.004

    Article  CAS  Google Scholar 

  • Morales, S., Álvarez, H., & Sánchez, C. (2008). Dynamic models for the production of glucose syrups from cassava starch. Food and Bioproducts Processing, 86(1), 25–30. https://doi.org/10.1016/j.fbp.2007.10.011

    Article  CAS  Google Scholar 

  • Morris, K. L., & Zemel, M. B. (1999). Glycemic index, cardiovascular disease, and obesity. Nutrition Reviews, 57(9 I), 273–276. https://doi.org/10.1111/j.1753-4887.1999.tb01810.x

    Article  CAS  PubMed  Google Scholar 

  • Pascoal, A. M., Di-Medeiros, M. C. B., Batista, K. A., Leles, M. I. G., Lião, L. M., & Fernandes, K. F. (2013). Extraction and chemical characterization of starch from S. lycocarpum fruits. Carbohydrate Polymers, 98(2), 1304–1310.

    Article  CAS  PubMed  Google Scholar 

  • Pratiwi, M., Faridah, D. N., & Lioe, H. N. (2018). Structural changes to starch after acid hydrolysis, debranching, autoclaving-cooling cycles, and heat moisture treatment (HMT): A review. Starch/Starke, 70: 1–9.

    Google Scholar 

  • Presecki, A. V., Blazevic, Z. F., & Vasic-Racki, D. (2013). Complete starch hydrolysis by the synergistic action of amylase and glucoamylase: Impact of calcium ions. Bioprocess and Biosystems Engineering, 36(11), 1555–1562. https://doi.org/10.1007/s00449-013-0926-2

    Article  CAS  PubMed  Google Scholar 

  • Qiao, D., Yu, L., Liu, H., Zou, W., Xie, F., Simon, G., Petinakis, E., Shen, Z., & Chen, L. (2016). Insights into the hierarchical structure and digestion rate of alkali-modulated starches with different amylose contents. Carbohydrate Polymers, 144, 271–281.

    Article  CAS  PubMed  Google Scholar 

  • Ramprakash, B., & Muthukumar, K. (2014). Comparative study on the production of biohydrogen from rice mill wastewater. International Journal of Hydrogen Energy, 39, 14613–14621.

    Article  CAS  Google Scholar 

  • Reddy, G., Altaf, M., Naveena, B. J., Venkateshwar, M., & Kumar, E. V. (2008). Amylolytic bacterial lactic acid fermentation - A review. Biotechnology Advances, 26(1), 22–34. https://doi.org/10.1016/j.biotechadv.2007.07.004

    Article  CAS  PubMed  Google Scholar 

  • Rocha, T. d. S., Carneiro, A. P. d. A., & Franco, C. M. L. (2010). Effect of enzymatic hydrolysis on some physicochemical properties of root and tuber granular starches. Ciência e Tecnologia de Alimentos, 30(2), 544–551. https://doi.org/10.1590/s0101-20612010000200039

    Article  Google Scholar 

  • Salcedo-mendoza, J., Paternina-urzola, S., & Lujan-rhenals, D. (2018). Enzymatic modification of cassava starch (Corpoica M-Tai) around the pasting temperature • Modificaciónenzimática de almidón de yuca (Corpoica M-Tai) alrededor de la temperatura de pasta. Revista DYNA, 85(204), 223–230.

    Article  Google Scholar 

  • Salgaonkar, M., Nadar, S. S., & Rathod, V. K. (2018). Combi-metal organic framework (Combi-MOF) of α-amylase and glucoamylase for one pot starch hydrolysis. International Journal of Biological Macromolecules, 113, 464–475. https://doi.org/10.1016/j.ijbiomac.2018.02.092

    Article  CAS  PubMed  Google Scholar 

  • Schirmer, M., Jekle, M., & Becker, T. (2015). Starch gelatinization and its complexity for analysis. Starch/Staerke, 67(1–2), 30–41. https://doi.org/10.1002/star.201400071

    Article  CAS  Google Scholar 

  • Shah, N., Mewada, R. K., & Mehta, T. (2016). Crosslinking of starch and its effect on viscosity behaviour. Reviews in Chemical Engineering, 32(2), 265–270.

    Article  CAS  Google Scholar 

  • Shariffa, Y. N., Karim, A. A., Fazilah, A., & Zaidul, I. S. M. (2009). Enzymatic hydrolysis of granular native and mildly heat-treated tapioca and sweet potato starches at sub-gelatinization temperature. Food Hydrocolloids, 23(2), 434–440. https://doi.org/10.1016/j.foodhyd.2008.03.009

    Article  CAS  Google Scholar 

  • Singh, H., Sodhi, N. S., Dhillon, B., Chang, Y. H., & Lin, J. H. (2021). Physicochemical and structural characteristics of sorghum starch as affected by acid-ethanol hydrolysis. Journal of Food Measurement and Characterization, 15(3), 2377–2385. https://doi.org/10.1007/s11694-020-00792-8

    Article  Google Scholar 

  • Situ, W., Song, X., Luo, S., & Yang, J. (2019). Digestibility and structures of vinasse starches with different types of raw rice and fermented leaven. Food Chemistry, 294, 96–103. https://doi.org/10.1016/j.foodchem.2019.05.036

    Article  CAS  PubMed  Google Scholar 

  • Song, W., Janaswamy, S., & Yao, Y. (2010). Structure and in vitro digestibility of Normal corn starch: Effect of acid treatment, autoclaving, and β-amylolysis. Journal of Agricultural and Food Chemistry, 58(17), 9753–9758.

    Google Scholar 

  • Sunaryanto, R., Handayani, B. H., & Safitri, R. (2013). Enzymatic and acid hydrolysis of sago starch for preparation of ethanol production. Microbiology Indonesia, 7(2), 4.

    Article  Google Scholar 

  • Sundarram, A., & Murthy, T. P. K. (2014). α -amylase production and applications: A review. Journal of Applied and Environmental Microbiology, 2(4), 166–175. https://doi.org/10.12691/jaem-2-4-10

    Article  Google Scholar 

  • Takeiti, C. Y., Kieckbusch, T. G., & Collares-Queiroz, F. P. (2010). Morphological and physicochemical characterization of commercial maltodextrins with different degrees of dextrose equivalent. International Journal of Food Properties, 13(2), 411–425. https://doi.org/10.1080/10942910802181024

    Article  CAS  Google Scholar 

  • Thys, R. C. S., Aires, A. G., Marczak, L. D. F., & Norena, C. P. Z. (2013). The effect of acid hydrolysis on the technological functional properties of pinhao (Araucaria brasiliensis) starch. Food Science and Technology, 33, 89–94.

    Article  Google Scholar 

  • Tu, Y., Huang, S., Chi, C., Lu, P., Chen, L., Li, L., & Li, X. (2021). Digestibility and structure changes of rice starch following co-fermentation of yeast and lactobacillus strains. International Journal of Biological Macromolecules, 184, 530–537. https://doi.org/10.1016/j.ijbiomac.2021.06.069

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich, M., & Floter, E. (2019). Functional properties of acid thinned potato starch: Impact of modification, molecular starch characteristics, and solution preparation. Starch/Starke, 71(11–12), 1–11.

    Google Scholar 

  • Uthumporn, U., Zaidul, I. S. M., & Karim, A. A. (2010). Hydrolysis of granular starch at sub-gelatinization temperature using a mixture of amylolytic enzymes. Food and Bioproducts Processing, 88(1), 47–54. https://doi.org/10.1016/j.fbp.2009.10.001

    Article  CAS  Google Scholar 

  • Van Der Maarel, M. J. E. C., Van Der Veen, B., Uitdehaag, J. C. M., Leemhuis, H., & Dijkhuizen, L. (2002). Properties and applications of starch-converting enzymes of the α-amylase family. Journal of Biotechnology, 94(2), 137–155. https://doi.org/10.1016/S0168-1656(01)00407-2

    Article  PubMed  Google Scholar 

  • Wang, S., Blazek, J., Gilbert, E., & Copeland, L. (2012). New insights on the mechanism of acid degradation of pea starch. Carbohydrate Polymers, 87(3), 1941–1949.

    Article  CAS  Google Scholar 

  • Wang, X., Wen, F., Zhang, S., Shen, R., Jiang, W., & Liu, J. (2017). Effect of acid hydrolysis on morphology, structure and digestion property of starch from Cynanchum auriculatum Royle ex Wight. International Journal of Biological Macromolecules, 96, 807–816.

    Article  CAS  PubMed  Google Scholar 

  • Xu, Q. S., Yan, Y. S., & Feng, J. X. (2016). Efficient hydrolysis of raw starch and ethanol fermentation: A novel raw starch-digesting glucoamylase from Penicillium oxalicum. Biotechnology for Biofuels, 9(1), 1–18. https://doi.org/10.1186/s13068-016-0636-5

    Article  CAS  Google Scholar 

  • Ye, J., Hu, X., Luo, S., Liu, W., Chen, J., Zeng, Z., & Liu, C. (2018). Properties of starch after extrusion: A review. Starch/Starke, 70(11–12), 1–35. https://doi.org/10.1002/star.201700110

    Article  CAS  Google Scholar 

  • Yiu, P. H., Loh, S. L., Rajan, A., Wong, S. C., & Bong, C. F. J. (2008). Physiochemical properties of sago starch modified by acid treatment in alcohol. American Journal of Applied Sciences, 5(4), 307–311. https://doi.org/10.3844/ajassp.2008.307.311

    Article  CAS  Google Scholar 

  • You, S., & Izydorczyk, M. S. (2007). Comparison of the physicochemical properties of barley starches after partial α-amylolysis and acid/alcohol hydrolysis. Carbohydr Polym, 69(3), 489–502. https://doi.org/10.1016/j.carbpol.2007.01.002

    Article  CAS  Google Scholar 

  • Zavareze, E. d. R., & Dias, A. R. G. (2011). Impact of heat-moisture treatment and annealing in starches: A review. Carbohydrate Polymers, 83(2), 317–328.

    Article  CAS  Google Scholar 

  • Zhai, Y., Li, X., Bai, Y., Jin, Z., & Svensson, B. (2022). Maltogenic α-amylase hydrolysis of wheat starch granules: Mechanism and relation to starch retrogradation. Food Hydrocolloids, 124, 107256. https://doi.org/10.1016/j.foodhyd.2021.107256

    Article  CAS  Google Scholar 

  • Zhang, T., & Oates, C. G. (1999). Relationship between α-amylase degradation and Physico-chemical properties of sweet potato starches. Food Chemistry, 65(2), 157–163. https://doi.org/10.1016/S0308-8146(98)00024-7

    Article  Google Scholar 

  • Zhang, H., Wang, R., Chen, Z., & Zhong, Q. (2019). Food hydrocolloids enzymatically modified starch with low digestibility produced from amylopectin by sequential amylosucrase and pullulanase treatments. Food Hydrocolloids, 95, 195–202. https://doi.org/10.1016/j.foodhyd.2019.04.036

    Article  CAS  Google Scholar 

  • Zhao, S., Jiao, A., Yang, Y., Liu, Q., Wu, W., & Jin, Z. (2021). Food bioscience modification of physicochemical properties and degradation of barley flour upon enzymatic extrusion. Food Bioscience, (December 2020), 101243. https://doi.org/10.1016/j.fbio.2021.101243

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Olawoye, B., Jolayemi, O.S., Origbemisoye, B.A., Oluwajuyitan, T.D., Popoola-Akinola, O. (2023). Hydrolysis of Starch. In: Sharanagat, V.S., Saxena, D.C., Kumar, K., Kumar, Y. (eds) Starch: Advances in Modifications, Technologies and Applications. Springer, Cham. https://doi.org/10.1007/978-3-031-35843-2_4

Download citation

Publish with us

Policies and ethics