Skip to main content
Log in

A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum

  • Biotechnologically relevant enzymes and proteins
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

A gene encoding an intracellular glucoamylase was identified in the genome of the extreme thermoacidophilic Archaeon Thermoplasma acidophilum. The gene taGA, consisting of 1,911 bp, was cloned and successfully expressed in Escherichia coli. The recombinant protein was purified 22-fold to homogeneity using heat treatment, anion-exchange chromatography, and gel filtration. Detailed analysis shows that the glucoamylase, with a molecular weight of 66 kDa per subunit, is a homodimer in its active state. Amylolytic activity was measured over a wide range of temperature (40–90°C) and pH (pH 3.5–7) and was maximal at 75°C and at acidic condition (pH 5). The recombinant archaeal glucoamylase uses a variety of polysaccharides as substrate, including glycogen and amylose. Maximal activity was measured towards amylopectin with a specific activity of 4.2 U/mg and increased almost threefold in the presence of manganese. Calcium ions have a pronounced effect on enzyme stability; in the presence of 5 mM CaCl2, the half-life increased from 15 min to 2 h at 80°C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Altschul SF, Lipman DJ (1990) Protein database searches for multiple alignments. Proc Natl Acad Sci U S A 87:5509–5513

    Article  CAS  Google Scholar 

  • Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402

    Article  CAS  Google Scholar 

  • Angelov A, Liebl W (2006) Insights into extreme thermoacidophily based on genome analysis of Picrophilus torridus and other thermoacidophilic archaea. J Biotechnol 126:3–10

    Article  CAS  Google Scholar 

  • Bendtsen JD, Nielsen H, von Heijne G, Brunak S (2004) Improved prediction of signal peptides: SignalP 3.0. J Mol Biol 340:783–795

    Article  Google Scholar 

  • Bernfeld P (1955) Amylases alpha and beta. Methods Enzymol 1:149–158

    Article  CAS  Google Scholar 

  • Berriman M, Rutherford K (2003) Viewing and annotating sequence data with Artemis. Brief Bioinform 4:124–132

    Article  CAS  Google Scholar 

  • Bertoldo C, Antranikian G (2002) Starch-hydrolyzing enzymes from thermophilic archaea and bacteria. Curr Opin Chem Biol 6:151–160

    Article  CAS  Google Scholar 

  • Britton HTS, Robinson RA (1931) Universal buffer solutions and the dissociation constant of Veronal. J Chem Soc 1931:1456–1462

    Article  Google Scholar 

  • Chung YC, Kobayashi T, Kanai H, Akiba T, Kudo T (1995) Purification and properties of extracellular amylase from the hyperthermophilic archaeon Thermococcus profundus DT5432. Appl Environ Microbiol 61:1502–1506

    Article  CAS  Google Scholar 

  • Coutinho PM, Henrissat B (1999) Carbohydrate-active enzymes: an integrated database approach. In: Gilbert HJ, Davies G, Henrissat B, Svensson B (eds) Recent advances in carbohydrate bioengineering. The Royal Society of Chemistry, Cambridge, pp 3–12

    Google Scholar 

  • Coutinho PM, Reilly PJ (1994a) Structural similarities in glucoamylase by hydrophobic cluster analysis. Protein Eng 7:749–760

    Article  CAS  Google Scholar 

  • Coutinho PM, Reilly PJ (1994b) Structure–function relationships in the catalytic and starch binding domains of glucoamylase. Protein Eng 7:393–400

    Article  CAS  Google Scholar 

  • Deppenmeier U, Johann A, Hartsch T, Merkl R, Schmitz RA, Martinez-Arias R, Henne A, Wiezer A, Baumer S, Jacobi C et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    CAS  PubMed  Google Scholar 

  • Dopson M, Baker-Austin C, Hind A, Bowman JP, Bond PL (2004) Characterization of Ferroplasma isolates and Ferroplasma acidarmanus sp. nov., extreme acidophiles from acid mine drainage and industrial bioleaching environments. Appl Environ Microbiol 70:2079–2088

    Article  CAS  Google Scholar 

  • Futterer O, Angelov A, Liesegang H, Gottschalk G, Schleper C, Schepers B, Dock C, Antranikian G, Liebl W (2004) Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proc Natl Acad Sci U S A 101:9091–9096

    Article  CAS  Google Scholar 

  • GOLD (2006) The Genomes On Line Database. Available at www.genomesonline.org. Accessed on October 11th 2006

  • Hendrickson EL, Kaul R, Zhou Y, Bovee D, Chapman P, Chung J, Conway de Macario E, Dodsworth JA, Gillett W, Graham DE et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969

    Article  CAS  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(Pt 2):309–316

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(Pt 3):781–788

    Article  CAS  Google Scholar 

  • Itoh T, Sakata Y, Akada R, Nimi O, Yamashita I (1989) Construction and characterization of mutant glucoamylases from the yeast Saccharomycopsis fibuligera. Agric Biol Chem 53:3159–3167

    CAS  Google Scholar 

  • Kawashima T, Amano N, Koike H, Makino S, Higuchi S, Kawashima-Ohya Y, Watanabe K, Yamazaki M, Kanehori K, Kawamoto T et al (2000) Archaeal adaptation to higher temperatures revealed by genomic sequence of Thermoplasma volcanium. Proc Natl Acad Sci U S A 97:14257–14262

    Article  CAS  Google Scholar 

  • Kim MS, Park JT, Kim YW, Lee HS, Nyawira R, Shin HS, Park CS, Yoo SH, Kim YR, Moon TW et al (2004) Properties of a novel thermostable glucoamylase from the hyperthermophilic archaeon Sulfolobus solfataricus in relation to starch processing. Appl Environ Microbiol 70:3933–3940

    Article  CAS  Google Scholar 

  • Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    CAS  Google Scholar 

  • Nigam P, Singh D (1995) Enzyme and microbial systems involved in starch processing. Enzyme Microb Technol 17:770–778

    Article  CAS  Google Scholar 

  • Norouzian D, Akbarzadeh A, Scharer JM, Moo Young M (2006) Fungal glucoamylases. Biotechnol Adv 24:80–85

    Article  CAS  Google Scholar 

  • Ruepp A, Graml W, Santos-Martinez ML, Koretke KK, Volker C, Mewes HW, Frishman D, Stocker S, Lupas AN, Baumeister W (2000) The genome sequence of the thermoacidophilic scavenger Thermoplasma acidophilum. Nature 407:508–513

    Article  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  Google Scholar 

  • Sauer J, Sigurskjold BW, Christensen U, Frandsen TP, Mirgorodskaya E, Harrison M, Roepstorff P, Svensson B (2000) Glucoamylase: structure/function relationships, and protein engineering. Biochim Biophys Acta 1543:275–293

    Article  CAS  Google Scholar 

  • Schepers B, Thiemann V, Antranikian G (2006) Characterization of a novel glucoamylase from the thermoacidophilic archaeon Picrophilus torridus heterologously expressed in E. coli. Eng Life Sci 6:311–317

    Article  CAS  Google Scholar 

  • Searcy DG (1976) Thermoplasma acidophilum: intracellular pH and potassium concentration. Biochim Biophys Acta 451:278–286

    Article  CAS  Google Scholar 

  • Serour E, Antranikian G (2002) Novel thermoactive glucoamylases from the thermoacidophilic archaea Thermoplasma acidophilum, Picrophilus torridus and Picrophilus oshimae. Antonie Van Leeuwenhoek 81:73–83

    Article  CAS  Google Scholar 

  • Sierks MR, Svensson B (1993) Functional roles of the invariant aspartic acid 55, tyrosine 306, and aspartic acid 309 in glucoamylase from Aspergillus awamori studied by mutagenesis. Biochemistry 32:113–1117

    Article  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  CAS  Google Scholar 

  • Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882

    Article  CAS  Google Scholar 

  • Uotsu-Tomita R, Tonozuka T, Sakai H, Sakano Y (2001) Novel glucoamylase-type enzymes from Thermoactinomyces vulgaris and Methanococcus jannaschii whose genes are found in the flanking region of the alpha-amylase genes. Appl Microbiol Biotechnol 56:465–473

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grant 04-008 202131 from the German Federal Ministry of Education and Research. We would like to thank Moritz Katzer for his support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Garabed Antranikian.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dock, C., Hess, M. & Antranikian, G. A thermoactive glucoamylase with biotechnological relevance from the thermoacidophilic Euryarchaeon Thermoplasma acidophilum . Appl Microbiol Biotechnol 78, 105–114 (2008). https://doi.org/10.1007/s00253-007-1293-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-007-1293-1

Keywords

Navigation