Skip to main content
Log in

High-entropy alloys by mechanical alloying: A review

  • Review
  • Nanocrystalline High Entropy Materials: Processing Challenges and Properties
  • Published:
Journal of Materials Research Aims and scope Submit manuscript

Abstract

Mechanical alloying (MA) followed by sintering has been one of the most widely adopted routes to produce nanocrystalline high-entropy alloys (HEAs). Enhanced solid solubility, room temperature processing, and homogenous alloy formation are the key benefits provided by MA. Spark plasma sintering has largely been used to obtain high-density HEA pellets from milled powders. However, there are many challenges associated with the production of HEAs using MA, which include contamination during milling and high propensity of oxidation. The present review provides a comprehensive understanding of various HEAs produced by MA so far, with the aim to bring out the governing aspects of phase evolution, thermal stability, and properties achieved. The limitations and challenges of the process are also critically assessed with a possible way forward. The paper also compares the results obtained from high-pressure torsion, another severe plastic deformation technique.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. B.S. Murty, J.W. Yeh, and S. Ranganathan: High-Entropy Alloys (Butterworth-Heinemann, London, UK, 2014).

    Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375–377, 213 (2004).

    Article  CAS  Google Scholar 

  3. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, and S.Y. Chang: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).

    Article  CAS  Google Scholar 

  4. Z. Li, K.G. Pradeep, Y. Deng, D. Raabe, and C.C. Tasan: Metastable high-entropy dual-phase alloys overcome the strength—ductility trade-off. Nature 534, 227 (2016).

    Article  CAS  Google Scholar 

  5. B. Gludovatz, A. Hohenwarter, D. Catoor, E.H. Chang, E.P. George, and R.O. Ritchie: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).

    Article  CAS  Google Scholar 

  6. M. Yang, X.J. Liu, H.H. Ruan, Y. Wu, H. Wang, and Z.P. Lu: High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses. J. Appl. Phys. 119, 245112 (2016).

    Article  CAS  Google Scholar 

  7. T.M. Butler, J.P. Alfano, R.L. Martens, and M.L. Weaver: High-temperature oxidation behavior of Al—Co—Cr—Ni–(Fe or Si) multicomponent high-entropy alloys. JOM 67, 246 (2015).

    Article  CAS  Google Scholar 

  8. G. Laplanche, U.F. Volkert, G. Eggeler, and E.P. George: Oxidation behavior of the CrMnFeCoNi high-entropy alloy. Oxid. Met. 85, 629 (2016).

    Article  CAS  Google Scholar 

  9. J.H. Zhao, X.L. Ji, Y.P. Shan, Y. Fu, and Z. Yao: On the microstructure and erosion—corrosion resistance of AlCrFeCoNiCu high-entropy alloy via annealing treatment. Mater. Sci. Technol. 32, 1271 (2016).

    Article  CAS  Google Scholar 

  10. B. Schuh, F. Mendez-Martin, B. Völker, E.P. George, H. Clemens, R. Pippan, and A. Hohenwarter: Mechanical properties, microstructure and thermal stability of a nanocrystalline CoCrFeMnNi high-entropy alloy after severe plastic deformation. Acta Mater. 96, 258 (2015).

    Article  CAS  Google Scholar 

  11. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw: High-entropy alloys with high saturation magnetization, electrical resistivity, and malleability. Sci. Rep. 3, 1 (2013).

    Google Scholar 

  12. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada: Exceptional resistance to grain growth in nanocrystalline CoCrFeNi high entropy alloy at high homologous temperatures. J. Alloys Compd. 662, 361 (2016).

    Article  CAS  Google Scholar 

  13. B.S. Murty and S. Ranganathan: Novel materials synthesis by mechanical alloying/milling. Int. Mater. Rev. 43, 101 (1998).

    Article  CAS  Google Scholar 

  14. J.S. Benjamin and T.E. Volin: The mechanism of mechanical alloying. Metall. Trans. 5, 1929 (1974).

    Article  CAS  Google Scholar 

  15. C. Suryanarayana: Mechanical alloying and milling. Prog. Mater. Sci. 46, 1 (2001).

    Article  CAS  Google Scholar 

  16. A.S.M. Ang, C.C. Berndt, M.L. Sesso, A. Anupam, S. Praveen, R.S. Kottada, and B.S. Murty: Plasma-sprayed high entropy alloys: Microstructure and properties of AlCoCrFeNi and MnCoCrFeNi. Metall. Mater. Trans. A 46, 791 (2014).

    Article  CAS  Google Scholar 

  17. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Synthesis and characterization of nanocrystalline AlFeTiCrZnCu high entropy solid solution by mechanical alloying. J. Alloys Compd. 460, 253 (2008).

    Article  CAS  Google Scholar 

  18. D.B. Miracle and O.N. Senkov: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).

    Article  CAS  Google Scholar 

  19. B.E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, and E.J. Lavernia: Recent progress in high entropy alloy research. JOM 69, 2024 (2017).

    Article  Google Scholar 

  20. Y. Shi, B. Yang, and P. Liaw: Corrosion-resistant high-entropy alloys: A review. Metals 7, 43 (2017).

    Article  CAS  Google Scholar 

  21. K. Guruvidyathri, K.C. Hari Kumar, J.W. Yeh, and B.S. Murty: Topologically close-packed phase formation in high entropy alloys: A review of calphad and experimental results. JOM 69, 2113 (2017).

    Article  CAS  Google Scholar 

  22. E.J. Pickering and N.G. Jones: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).

    Article  CAS  Google Scholar 

  23. A.S. Sharma, S. Yadav, K. Biswas, and B. Basu: High-entropy alloys and metallic nanocomposites: Processing challenges, microstructure development and property enhancement. Mater. Sci. Eng., R 131, 1 (2018).

    Article  Google Scholar 

  24. C.C. Koch: Nanocrystalline high-entropy alloys. J. Mater. Res. 32, 3435 (2017).

    Article  CAS  Google Scholar 

  25. C.D. Gómez-Esparza, F. Baldenebro-López, L. González-Rodelas, J. Baldenebro-López, and R. Martínez-Sánchez: Series of nanocrystalline NiCoAlFe(Cr, Cu, Mo, Ti) high-entropy alloys produced by mechanical alloying. Mater. Res. 19, 39 (2016).

    Article  CAS  Google Scholar 

  26. C. Sun, P. Li, S. Xi, Y. Zhou, S. Li, and X. Yang: A new type of high entropy alloy composite Fe18Ni23Co25Cr21Mo8WNb3C2 prepared by mechanical alloying and hot pressing sintering. Mater. Sci. Eng., A 728, 144 (2018).

    Article  CAS  Google Scholar 

  27. Ł. Rogal, D. Kalita, A. Tarasek, P. Bobrowski, and F. Czerwinski: Effect of SiC nano-particles on microstructure and mechanical properties of the CoCrFeMnNi high entropy alloy. J. Alloys Compd. 708, 344 (2017).

    Article  CAS  Google Scholar 

  28. A.J. Zaddach, C. Niu, A.A. Oni, M. Fan, J.M. LeBeau, D.L. Irving, and C.C. Koch: Structure and magnetic properties of a multi-principal element Ni—Fe—Cr—Co—Zn—Mn alloy. Intermetallics 68, 107 (2016).

    Article  CAS  Google Scholar 

  29. Z. Fu, W. Chen, S. Fang, and X. Li: Effect of Cr addition on the alloying behavior, microstructure and mechanical properties of twinned CoFeNiAl0.5Ti0.5 alloy. Mater. Sci. Eng., A 597, 204 (2014).

    Article  CAS  Google Scholar 

  30. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy: Effect of heat treatment on microstructure and mechanical properties of spark plasma sintered AlCoCrFeNiTi0.5 high entropy alloy. Mater. Lett. 174, 53 (2016).

    Article  CAS  Google Scholar 

  31. B. Wu, W. Chen, Z. Jiang, Z. Chen, and Z. Fu: Influence of Ti addition on microstructure and mechanical behavior of a FCC-based Fe30Ni30Co30Mn10 alloy. Mater. Sci. Eng., A 676, 492 (2016).

    Article  CAS  Google Scholar 

  32. A. Dwivedi, C.C. Koch, and K.V. Rajulapati: On the single phase fcc solid solution in nanocrystalline Cr—Nb—Ti—V–Zn high-entropy alloy. Mater. Lett. 183, 44 (2016).

    Article  CAS  Google Scholar 

  33. S. Zhang, Y. Sun, B. Ke, Y. Li, W. Ji, W. Wang, and Z. Fu: Preparation and characterization of TiB2-(supra-nano-dual-phase) high-entropy alloy cermet by spark plasma sintering. Metals 8, 58 (2018).

    Article  CAS  Google Scholar 

  34. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong: Ultra-high strength WNbMoTaV high-entropy alloys with fine grain structure fabricated by powder metallurgical process. Mater. Sci. Eng., A 712, 616 (2018).

    Article  CAS  Google Scholar 

  35. W. Ge, B. Wu, S. Wang, S. Xu, C. Shang, Z. Zhang, and Y. Wang: Characterization and properties of CuZrAlTiNi high entropy alloy coating obtained by mechanical alloying and vacuum hot pressing sintering. Adv. Powder Technol. 28, 2556 (2017).

    Article  CAS  Google Scholar 

  36. Z. Fu, W. Chen, Z. Jiang, B.E. MacDonald, Y. Lin, F. Chen, L. Zhang, and E.J. Lavernia: Influence of Cr removal on the microstructure and mechanical behaviour of a high-entropy Al0.8Ti0.2CoNiFeCr alloy fabricated by powder metallurgy. Powder Metall. 5899, 1 (2018).

    Google Scholar 

  37. F. Salemi, M.H. Abbasi, and F. Karimzadeh: Synthesis and thermodynamic analysis of nanostructured CuNiCoZnAl high entropy alloy produced by mechanical alloying. J. Alloys Compd. 685, 278 (2016).

    Article  CAS  Google Scholar 

  38. X.R. Tan, G.P. Zhang, Q. Zhi, and Z.X. Liu: Effects of milling on the microstructure and hardness of Al2NbTi3V2Zr high-entropy alloy. Mater. Des. 109, 27 (2016).

    Article  CAS  Google Scholar 

  39. M. Vaidya, A. Karati, A. Marshal, K.G. Pradeep, and B.S. Murty: Phase evolution and stability of nanocrystalline CoCrFeNi and CoCrFeMnNi high entropy alloys. J. Alloys Compd. 770, 1004 (2019).

    Article  CAS  Google Scholar 

  40. W. Ji, W. Wang, H. Wang, J. Zhang, Y. Wang, F. Zhang, and Z. Fu: Alloying behavior and novel properties of CoCrFeNiMn high-entropy alloy fabricated by mechanical alloying and spark plasma sintering. Intermetallics 56, 24 (2014).

    Article  CAS  Google Scholar 

  41. J. Xu, Z.F. Zhao, and Y. Wang: Effect of annealing treatment on the microstructure and magnetic properties of FeSiBAlNi(C, Ce) high entropy alloys. Mater. Sci. Forum 849, 52 (2016).

    Article  Google Scholar 

  42. H.L. Wang, T.X. Gao, J.Z. Niu, P.J. Shi, J. Xu, and Y. Wang: Microstructure, thermal properties, and corrosion behaviors of FeSiBAlNi alloy fabricated by mechanical alloying and spark plasma sintering. Int. J. Miner., Metall. Mater. 23, 77 (2016).

    Article  CAS  Google Scholar 

  43. E. Colombini, R. Rosa, L. Trombi, M. Zadra, A. Casagrande, and P. Veronesi: High entropy alloys obtained by field assisted powder metallurgy route: SPS and microwave heating. Mater. Chem. Phys. 210, 78 (2018).

    Article  CAS  Google Scholar 

  44. H. Prasad, S. Singh, and B.B. Panigrahi: Mechanical activated synthesis of alumina dispersed FeNiCoCrAlMn high entropy alloy. J. Alloys Compd. 692, 720 (2017).

    Article  CAS  Google Scholar 

  45. B. Kang, J. Lee, H.J. Ryu, and S.H. Hong: Microstructure, mechanical property and Hall—Petch relationship of a light-weight refractory Al0.1CrNbVMo high entropy alloy fabricated by powder metallurgical process. J. Alloys Compd. 767, 1012 (2018).

    Article  CAS  Google Scholar 

  46. N. Kumar, C.S. Tiwary, and K. Biswas: Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J. Mater. Sci. 53, 13411 (2018).

    Article  CAS  Google Scholar 

  47. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Formation and stability of equiatomic and nonequiatomic nanocrystalline CuNiCoZnAlTi high-entropy alloys by mechanical alloying. Metall. Mater. Trans. A 41, 2703 (2010).

    Article  CAS  Google Scholar 

  48. M. Vaidya, A. Prasad, A. Parakh, and B.S. Murty: Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: Novel approach to alloy synthesis using mechanical alloying. Mater. Des. 126, 37 (2017).

    Article  CAS  Google Scholar 

  49. Y. Xie, H. Cheng, Q. Tang, W. Chen, W. Chen, and P. Dai: Effects of N addition on microstructure and mechanical properties of CoCrFeNiMn high entropy alloy produced by mechanical alloying and vacuum hot pressing sintering. Intermetallics 93, 228 (2018).

    Article  CAS  Google Scholar 

  50. H. Cheng, W. Chen, X. Liu, Q. Tang, Y. Xie, and P. Dai: Effect of Ti and C additions on the microstructure and mechanical properties of the FeCoCrNiMn high-entropy alloy. Mater. Sci. Eng., A 719, 192 (2018).

    Article  CAS  Google Scholar 

  51. S. Varalakshmi, M. Kamaraj, and B.S. Murty: Processing and properties of nanocrystalline CuNiCoZnAlTi high entropy alloys by mechanical alloying. Mater. Sci. Eng., A 527, 1027 (2010).

    Article  CAS  Google Scholar 

  52. Z. Fu, W. Chen, Z. Chen, H. Wen, and E.J. Lavernia: Influence of Ti addition and sintering method on microstructure and mechanical behavior of a medium-entropy Al0.6CoNiFe alloy. Mater. Sci. Eng., A 619, 137 (2014).

    Article  CAS  Google Scholar 

  53. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K.K. Mukhopadhyay: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 87 (2018).

    Article  CAS  Google Scholar 

  54. S. Varalakshmi, G. Appa Rao, M. Kamaraj, and B.S. Murty: Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying. J. Mater. Sci. 45, 5158 (2010).

    Article  CAS  Google Scholar 

  55. M. Omori: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183 (2000).

    Article  Google Scholar 

  56. M. Murali, S.P. Kumaresh Babu, J. Majhi, A. Vallimanalan, and R. Mahendran: Processing and characterisation of nano crystalline AlCoCrCuFeTix high-entropy alloy. Powder Metall. 61, 139 (2018).

    Article  CAS  Google Scholar 

  57. S. Praveen, B.S. Murty, and R.S. Kottada: Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys. Mater. Sci. Eng., A 534, 83 (2012).

    Article  CAS  Google Scholar 

  58. S-H. Joo, H. Kato, M.J. Jang, J. Moon, E.B. Kim, S-J. Hong, and H.S. Kim: Structure and properties of ultrafine-grained CoCrFeMnNi high-entropy alloys produced by mechanical alloying and spark plasma sintering. J. Alloys Compd. 698, 591 (2017).

    Article  CAS  Google Scholar 

  59. P. Wang, H. Cai, and X. Cheng: Effect of Ni/Cr ratio on phase, microstructure and mechanical properties of NixCoCuFeCr2−x (x = 1.0, 1.2, 1.5, 1.8 mol) high entropy alloys. J. Alloys Compd. 662, 20 (2016).

    Article  CAS  Google Scholar 

  60. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Radioactive isotopes reveal a non sluggish kinetics of grain boundary diffusion in high entropy alloys. Sci. Rep. 7, 1 (2017).

    Article  CAS  Google Scholar 

  61. S. Praveen, B.S. Murty, and R.S. Kottada: Phase evolution and densification behavior of nanocrystalline multicomponent high entropy alloys during spark plasma sintering. JOM 65, 1797 (2013).

    Article  CAS  Google Scholar 

  62. S. Praveen, A. Anupam, T. Sirasani, B.S. Murty, and R.S. Kottada: Characterization of oxide dispersed AlCoCrFe high entropy alloy synthesized by mechanical alloying and spark plasma sintering. Trans. Indian Inst. Met. 66, 369 (2013).

    Article  CAS  Google Scholar 

  63. R.B. Mane, Y. Rajkumar, and B.B. Panigrahi: Sintering mechanism of CoCrFeMnNi high-entropy alloy powders. Powder Metall. 61, 131 (2018).

    Article  CAS  Google Scholar 

  64. R.B. Mane and B.B. Panigrahi: Sintering mechanisms of mechanically alloyed CoCrFeNi high-entropy alloy powders. J. Mater. Res. 33, 3321 (2018).

    Article  CAS  Google Scholar 

  65. R.B. Mane and B.B. Panigrahi: Comparative study on sintering kinetics of as-milled and annealed CoCrFeNi high entropy alloy powders. Mater. Chem. Phys. 210, 49 (2018).

    Article  CAS  Google Scholar 

  66. R.B. Mane and B.B. Panigrahi: Effect of alloying order on non-isothermal sintering kinetics of mechanically alloyed high entropy alloy powders. Mater. Lett. 217, 131 (2018).

    Article  CAS  Google Scholar 

  67. E. Colombini, M. Lassinantti Gualtieri, R. Rosa, F. Tarterini, M. Zadra, A. Casagrande, and P. Veronesi: SPS-assisted synthesis of SICp reinforced high entropy alloys: Reactivity of SIC and effects of pre-mechanical alloying and post-annealing treatment. Powder Metall. 61, 64 (2018).

    Article  CAS  Google Scholar 

  68. Z. Liu, Y. Lei, C. Gray, and G. Wang: Examination of solid-solution phase formation rules for high entropy alloys from atomistic Monte Carlo simulations. JOM 67, 2364 (2015).

    Article  CAS  Google Scholar 

  69. Y. Zhang and Y.J. Zhou: Solid solution formation criteria for high entropy alloys. Mater. Sci. Forum 561–565, 1337 (2007).

    Article  Google Scholar 

  70. S. Guo, C. Ng, J. Lu, and C.T. Liu: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).

    Article  CAS  Google Scholar 

  71. A. Kumar, P. Dhekne, A.K. Swarnakar, and M.K. Chopkar: Analysis of Si addition on phase formation in AlCoCrCuFeNiSix high entropy alloys. Mater. Lett. 188, 73 (2017).

    Article  CAS  Google Scholar 

  72. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas: Powder metallurgical processing of equiatomic AlCoCrFeNi high entropy alloy: Microstructure and mechanical properties. Mater. Sci. Eng., A 679, 299 (2017).

    Article  CAS  Google Scholar 

  73. M. Zhang, W. Zhang, Y. Liu, B. Liu, and J. Wang: FeCoCrNiMo high-entropy alloys prepared by powder metallurgy processing for diamond tool applications. Powder Metall. 61, 123 (2018).

    Article  CAS  Google Scholar 

  74. Y. Zhang, B. Zhang, K. Li, G.L. Zhao, and S.M. Guo: Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J. Alloys Compd. 734, 220 (2018).

    Article  CAS  Google Scholar 

  75. J. Chen, P. Niu, T. Wei, L. Hao, Y. Liu, X. Wang, and Y. Peng: Fabrication and mechanical properties of AlCoNiCrFe high-entropy alloy particle reinforced Cu matrix composites. J. Alloys Compd. 649, 630 (2015).

    Article  CAS  Google Scholar 

  76. V. Shivam, J. Basu, Y. Shadangi, M.K. Singh, and N.K. Mukhoupadhyay: Mechano-chemical synthesis, thermal stability and phase evolution in AlCoCrFeNiMn high entropy alloy. J. Alloys Compd. 757, 20 (2016).

    Google Scholar 

  77. S. Praveen, A. Anupam, R. Tilak, and R.S. Kottada: Phase evolution and thermal stability of AlCoCrFe high entropy alloy with carbon as unsolicited addition from milling media. Mater. Chem. Phys. 210, 57 (2018).

    Article  CAS  Google Scholar 

  78. R.M. Pohan, B. Gwalani, J. Lee, T. Alam, J.Y. Hwang, H.J. Ryu, R. Banerjee, and S.H. Hong: Microstructures and mechanical properties of mechanically alloyed and spark plasma sintered Al0.3CoCrFeMnNi high entropy alloy. Mater. Chem. Phys. 210, 62 (2018).

    Article  CAS  Google Scholar 

  79. M. Vaidya, S. Armugam, S. Kashyap, and B.S.S. Murty: Amorphization in equiatomic high entropy alloys. J. Non-Cryst. Solids 413, 8 (2015).

    Article  CAS  Google Scholar 

  80. Z. Fu, W. Chen, H. Wen, D. Zhang, Z. Chen, B. Zheng, Y. Zhou, and E.J. Lavernia: Microstructure and strengthening mechanisms in an FCC structured single-phase nanocrystalline Co25Ni25Fe25Al7.5Cu17.5 high-entropy alloy. Acta Mater. 107, 59 (2016).

    Article  CAS  Google Scholar 

  81. L.H. Tian, W. Xiong, C. Liu, S. Lu, and M. Fu: Microstructure and wear behavior of atmospheric plasma-sprayed AlCoCrFeNiTi high-entropy alloy coating. J. Mater. Eng. Perform. 25, 5513 (2016).

    Article  CAS  Google Scholar 

  82. W. Ji, J. Zhang, W. Wang, H. Wang, F. Zhang, Y. Wang, and Z. Fu: Fabrication and properties of TiB2-based cermets by spark plasma sintering with CoCrFeNiTiAl high-entropy alloy as sintering aid. J. Eur. Ceram. Soc. 35, 879 (2014).

    Article  CAS  Google Scholar 

  83. H. Hadraba, Z. Chlup, A. Dlouhy, F. Dobes, P. Roupcova, M. Vilemova, and J. Matejicek: Oxide dispersion strengthened CoCrFeNiMn high-entropy alloy. Mater. Sci. Eng., A 689, 252 (2017).

    Article  CAS  Google Scholar 

  84. Y. Liu, J. Wang, Q. Fang, B. Liu, Y. Wu, and S. Chen: Preparation of superfine-grained high entropy alloy by spark plasma sintering gas atomized powder. Intermetallics 68, 16 (2016).

    Article  CAS  Google Scholar 

  85. M. Murali, S.P.K. Babu, B.J. Krishna, and A. Vallimanalan: Synthesis and characterization of AlCoCrCuFeZnx high-entropy alloy by mechanical alloying. Prog. Nat. Sci.: Mater. Int. 26, 380 (2016).

    Article  CAS  Google Scholar 

  86. S. Mohanty, N.P. Gurao, and K. Biswas: Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater. Sci. Eng., A 617, 211 (2014).

    Article  CAS  Google Scholar 

  87. A.I. Yurkova, V.V. Chernyavskii, and V.F. Gorban: Structure and mechanical properties of high-entropy AlCuNiFeTi and AlCuNiFeCr alloys produced by mechanical activation followed by pressure sintering. Powder Metall. Met. Ceram. 55, 152 (2016).

    Article  CAS  Google Scholar 

  88. R.F. Zhao, B. Ren, G.P. Zhang, Z.X. Liu, and J. Jian Zhang: Effect of Co content on the phase transition and magnetic properties of CoxCrCuFeMnNi high-entropy alloy powders. J. Magn. Magn. Mater. 468, 14 (2018).

    Article  CAS  Google Scholar 

  89. Y. Tong, P. Qi, X. Liang, Y. Chen, Y. Hu, and Z. Hu: Different-shaped ultrafine MoNbTaW HEA powders prepared via mechanical alloying. Materials 10, 1 (2018).

    Google Scholar 

  90. A. Kumar, A.K.A.K. Swarnakar, and M. Chopkar: Phase evolution and mechanical properties of AlCoCrFeNiSix high-entropy alloys synthesized by mechanical alloying and spark plasma sintering. J. Mater. Eng. Perform. 27, 3304 (2018).

    Article  CAS  Google Scholar 

  91. H. Cheng, X. Liu, Q. Tang, W. Wang, X. Yan, and P. Dai: Microstructure and mechanical properties of FeCoCrNiMnAlx high-entropy alloys prepared by mechanical alloying and hot-pressed sintering. J. Alloys Compd. 775, 742 (2019).

    Article  CAS  Google Scholar 

  92. W. Guo, B. Liu, Y. Liu, T. Li, A. Fu, Q. Fang, and Y. Nie: Microstructures and mechanical properties of ductile NbTaTiV refractory high entropy alloy prepared by powder metallurgy. J. Alloys Compd. 776, 428 (2019).

    Article  CAS  Google Scholar 

  93. D. Oleszak, A. Antolak-Dudka, and T. Kulik: High entropy multicomponent WMoNbZrV alloy processed by mechanical alloying. Mater. Lett. 232, 160 (2018).

    Article  CAS  Google Scholar 

  94. V. Shivam, J. Basu, V.K. Pandey, Y. Shadangi, and N.K. Mukhopadhyay: Alloying behaviour, thermal stability and phase evolution in quinary AlCoCrFeNi high entropy alloy. Adv. Powder Technol. 29, 2221 (2018).

    Article  CAS  Google Scholar 

  95. K.M. Youssef, A.J. Zaddach, C. Niu, D.L. Irving, and C.C. Koch: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2014).

    Article  CAS  Google Scholar 

  96. Q. Yang, Y. Tang, Y. Wen, Q. Zhang, D. Deng, and X. Nai: Microstructures and properties of CoCrCuFeNiMox high-entropy alloys fabricated by mechanical alloying and spark plasma sintering. Powder Metall. 61, 115 (2018).

    Article  CAS  Google Scholar 

  97. L. Tian, M. Fu, and W. Xiong: Microstructural evolution of AlCoCrFeNiSi high-entropy alloy powder during mechanical alloying and its coating performance. Materials 11, 320 (2018).

    Article  CAS  Google Scholar 

  98. Y. Long, K. Su, J. Zhang, X. Liang, H. Peng, and X. Li: Enhanced strength of a mechanical alloyed NbMoTaWVTi refractory high entropy alloy. Materials 11, 1 (2018).

    CAS  Google Scholar 

  99. D. Kumar, O. Maulik, S. Kumar, Y.V.S.S. Prasad, and V. Kumar: Phase and thermal study of equiatomic AlCuCrFeMnW high entropy alloy processed via spark plasma sintering. Mater. Chem. Phys. 210, 71 (2018).

    Article  CAS  Google Scholar 

  100. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara: Characterization of nanocrystalline CoCrFeNiTiAl high-entropy solid solution processed by mechanical alloying. J. Alloys Compd. 495, 33 (2010).

    Article  CAS  Google Scholar 

  101. S. Praveen, B.S. Murty, and R.S. Kottada: Effect of molybdenum and niobium on the phase formation and hardness of nanocrystalline CoCrFeNi high entropy alloys. J. Nanosci. Nanotechnol. 14, 8106 (2014).

    Article  CAS  Google Scholar 

  102. F. Yuhu, Z. Yunpeng, G. Hongyan, S. Huimin, and H. Li: AlNiCrFexMo0.2CoCu high entropy alloys prepared by powder metallurgy. Rare Met. Mater. Eng. 42, 1127 (2013).

    Article  Google Scholar 

  103. Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D.Z. Zhu: Alloying behavior and deformation twinning in a CoNiFeCrAl0.6Ti0.4 high entropy alloy processed by spark plasma sintering. J. Alloys Compd. 553, 316 (2013).

    Article  CAS  Google Scholar 

  104. Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, and S. Yang: Fabrication and properties of nanocrystalline Co0.5FeNiCrTi0.5 high entropy alloy by MA-SPS technique. Mater. Des. 44, 535 (2013).

    Article  CAS  Google Scholar 

  105. D. Kumar, O. Maulik, A.S. Bagri, Y.V.S.S. Prasad, and V. Kumar: Microstructure and characterization of mechanically alloyed equiatomic AlCuCrFeMnW high entropy alloy. Mater. Today: Proc. 3, 2926 (2016).

    Google Scholar 

  106. N.T.B.N. Koundinya, C. Sajith Babu, K. Sivaprasad, P. Susila, N. Kishore Babu, and J. Baburao: Phase evolution and thermal analysis of nanocrystalline AlCrCuFeNiZn high entropy alloy produced by mechanical alloying. J. Mater. Eng. Perform. 22, 3077 (2013).

    Article  CAS  Google Scholar 

  107. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, and Govind: Processing and consolidation of nanocrystalline Cu—Zn—Ti—Fe—Cr high-entropy alloys via mechanical alloying. Metall. Mater. Trans. A 44, 4532 (2013).

    Article  CAS  Google Scholar 

  108. N.H. Tariq, M. Naeem, B.A. Hasan, J.I. Akhter, and M. Siddique: Effect of W and Zr on structural, thermal and magnetic properties of AlCoCrCuFeNi high entropy alloy. J. Alloys Compd. 556, 79 (2013).

    Article  CAS  Google Scholar 

  109. F. Průša, A. Šenková, V. Kučera, J. Čapek, and D. Vojtěch: Properties of a high-strength ultrafine-grained CoCrFeNiMn high-entropy alloy prepared by short-term mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 734, 341 (2018).

    Article  CAS  Google Scholar 

  110. S. Fang, W. Chen, and Z. Fu: Microstructure and mechanical properties of twinned Al0.5CrFeNiCo0.3C0.2 high entropy alloy processed by mechanical alloying and spark plasma sintering. Mater. Des. 54, 973 (2014).

    Article  CAS  Google Scholar 

  111. C. Wang, W. Ji, and Z. Fu: Mechanical alloying and spark plasma sintering of CoCrFeNiMnAl high-entropy alloy. Adv. Powder Technol. 25, 1334 (2014).

    Article  CAS  Google Scholar 

  112. Z. Fu, W. Chen, H. Wen, Z. Chen, and E.J. Lavernia: Effects of Co and sintering method on microstructure and mechanical behavior of a high-entropy Al0.6NiFeCrCo alloy prepared by powder metallurgy. J. Alloys Compd. 646, 175 (2015).

    Article  CAS  Google Scholar 

  113. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu: Effects of Co and Ti on microstructure and mechanical behavior of Al0.75FeNiCrCo high entropy alloy prepared by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 648, 217 (2015).

    Article  CAS  Google Scholar 

  114. F.J. Baldenebro-Lopez, J.M. Herrera-Ramírez, S.P. Arredondo-Rea, C.D. Gómez-Esparza, and R. Martínez-Sánchez: Simultaneous effect of mechanical alloying and arc-melting processes in the microstructure and hardness of an AlCoFeMoNiTi high-entropy alloy. J. Alloys Compd. 643, S250 (2015).

    Article  CAS  Google Scholar 

  115. Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, and E.J. Lavernia: Microstructure and mechanical behavior of a novel Co20Ni20Fe20Al20Ti20 alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Sci. Eng., A 644, 10 (2015).

    Article  CAS  Google Scholar 

  116. H. Khanchandani, P. Sharma, R. Kumar, O. Maulik, and V. Kumar: Effect of sintering on phase evolution in AlMgFeCuCrNi4.75 high entropy alloy. Adv. Powder Technol. 27, 289 (2016).

    Article  CAS  Google Scholar 

  117. I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, and I. Dlouhy: Microstructure and mechanical properties of Ni1.5Co1.5CrFeTi0.5 high entropy alloy fabricated by mechanical alloying and spark plasma sintering. Mater. Des. 119, 141 (2017).

    Article  CAS  Google Scholar 

  118. P.F. Yu, L.J. Zhang, H. Cheng, H. Zhang, M.Z. Ma, Y.C. Li, G. Li, P.K. Liaw, and R.P. Liu: The high-entropy alloys with high hardness and soft magnetic property prepared by mechanical alloying and high-pressure sintering. Intermetallics 70, 82 (2016).

    Article  CAS  Google Scholar 

  119. P. Wang, H. Cai, S. Zhou, and L. Xu: Processing, microstructure and properties of Ni1.5CoCuFeCr0.5−xVx high entropy alloys with carbon introduced from process control agent. J. Alloys Compd. 695, 462 (2017).

    Article  CAS  Google Scholar 

  120. C. Shang, E. Axinte, J. Sun, X. Li, P. Li, J. Du, P. Qiao, and Y. Wang: CoCrFeNi(W1−xMox) high-entropy alloy coatings with excellent mechanical properties and corrosion resistance prepared by mechanical alloying and hot pressing sintering. Mater. Des. 117, 193 (2017).

    Article  CAS  Google Scholar 

  121. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar: Structural evolution of spark plasma sintered AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) high entropy alloys. Intermetallics 77, 46 (2016).

    Article  CAS  Google Scholar 

  122. O. Maulik and V. Kumar: Synthesis of AlFeCuCrMgx (x = 0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater. Charact. 110, 116 (2015).

    Article  CAS  Google Scholar 

  123. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, and X. Dong: A new mechanism for improving electromagnetic properties based on tunable crystallographic powders. RSC Adv. 8, 14936 (2018).

    Article  CAS  Google Scholar 

  124. I. Moravcik, L. Gouvea, V. Hornik, Z. Kovacova, M. Kitzmantel, E. Neubauer, and I. Dlouhy: Synergic strengthening by oxide and coherent precipitate dispersions in high-entropy alloy prepared by powder metallurgy. Scr. Mater. 157, 24 (2018).

    Article  CAS  Google Scholar 

  125. F. Alijani, M. Reihanian, and K. Gheisari: Study on phase formation in magnetic FeCoNiMnV high entropy alloy produced by mechanical alloying. J. Alloys Compd. 773, 623 (2019).

    Article  CAS  Google Scholar 

  126. S. Nam, M.J. Kim, J.Y. Hwang, and H. Choi: Strengthening of Al0.15CoCrCuFeNiTix–C (x = 0, 1, 2) high-entropy alloys by grain refinement and using nanoscale carbides via powder metallurgical route. J. Alloys Compd. 762, 29 (2018).

    Article  CAS  Google Scholar 

  127. S. Yadav, S. Sarkar, A. Aggarwal, A. Kumar, and K. Biswas: Wear and mechanical properties of novel (CuCrFeTiZn)100−xPbx high entropy alloy composite via mechanical alloying and spark plasma sintering. Wear 410–411, 93 (2018).

    Article  CAS  Google Scholar 

  128. B. Zhang, Y. Duan, Y. Cui, G. Ma, T. Wang, and X. Dong: Improving electromagnetic properties of FeCoNiSi0.4Al0.4 high entropy alloy powders via their tunable aspect ratio and elemental uniformity. Mater. Des. 149, 173 (2018).

    Article  CAS  Google Scholar 

  129. H. Baker and H. Okamoto: ASM Handbook: Alloy Phase Diagrams, Vol. 3 (ASM International, Materials Park, Ohio, 1992); p. 1741.

    Google Scholar 

  130. M. Vaidya, K. Guruvidyathri, and B.S. Murty: Phase formation and thermal stability of CoCrFeNi and CoCrFeMnNi equiatomic high entropy alloys. J. Alloys Compd. 774, 856 (2019).

    Article  CAS  Google Scholar 

  131. Y.L. Chen, Y.H. Hu, C.A. Hsieh, J.W. Yeh, and S.K. Chen: Competition between elements during mechanical alloying in an octonary multi-principal-element alloy system. J. Alloys Compd. 481, 768 (2009).

    Article  CAS  Google Scholar 

  132. L. Ma, L. Wang, T. Zhang, and A. Inoue: Bulk glass formation of Ti—Zr—Hf—Cu—M (M = Fe, Co, Ni) alloys. Mater. Trans. 43, 277 (2002).

    Article  CAS  Google Scholar 

  133. W. Ge, Y. Wang, C. Shang, Z. Zhang, and Y. Wang: Microstructures and properties of equiatomic CuZr and CuZrAlTiNi bulk alloys fabricated by mechanical alloying and spark plasma sintering. J. Mater. Sci. 52, 5726 (2017).

    Article  CAS  Google Scholar 

  134. Y.L. Chen, C.W. Tsai, C.C. Juan, M.H. Chuang, J.W. Yeh, T.S. Chin, and S.K. Chen: Amorphization of equimolar alloys with HCP elements during mechanical alloying. J. Alloys Compd. 506, 210 (2010).

    Article  CAS  Google Scholar 

  135. Y.L. Chen, Y.H. Hu, C.W. Tsai, C.A. Hsieh, S.W. Kao, J.W. Yeh, T.S. Chin, and S.K. Chen: Alloying behavior of binary to octonary alloys based on Cu—Ni—Al—Co—Cr—Fe—Ti—Mo during mechanical alloying. J. Alloys Compd. 477, 696 (2009).

    Article  CAS  Google Scholar 

  136. Y.L. Chen, Y.H. Hu, C.W. Tsai, J.W. Yeh, S.K. Chen, and S.Y. Chang: Structural evolution during mechanical milling and subsequent annealing of Cu—Ni—Al—Co—Cr—Fe—Ti alloys. Mater. Chem. Phys. 118, 354 (2009).

    Article  CAS  Google Scholar 

  137. A.W. Weeber and H. Bakker: Amorphization by ball milling. A review. Physica B 153, 93–135 (1988).

    Article  CAS  Google Scholar 

  138. W. Wang, B. Li, S. Zhai, J. Xu, Z. Niu, J. Xu, and Y. Wang: Alloying behavior and properties of FeSiBAlNiCox high entropy alloys fabricated by mechanical alloying and spark plasma sintering. Met. Mater. Int. 24, 1112–1119 (2018).

    Article  CAS  Google Scholar 

  139. L.C. Zhang, K.B. Kim, P. Yu, W.Y. Zhang, U. Kunz, and J. Eckert: Amorphization in mechanically alloyed (Ti, Zr, Nb)–(Cu, Ni)–Al equiatomic alloys. J. Alloys Compd. 428, 157 (2007).

    Article  CAS  Google Scholar 

  140. H-V. Nguyen, J-S. Kim, Y-S. Kwon, and J-C. Kim: Amorphous Ti—Cu—Ni—Al alloys prepared by mechanical alloying. J. Mater. Sci. 44, 2700 (2009).

    Article  CAS  Google Scholar 

  141. V.K. Portnoi, A.V. Leonov, S.E. Filippova, A.N. Streletskii, and A.I. Logacheva: Mechanochemical synthesis and heating-induced transformations of a high-entropy Cr—Fe—Co—Ni—Al—Ti alloy. Inorg. Mater. 50, 1202 (2014).

    Article  CAS  Google Scholar 

  142. J. Wang, Z. Zheng, J. Xu, and Y. Wang: Microstructure and magnetic properties of mechanically alloyed FeSiBAlNi(Nb) high entropy alloys. J. Magn. Magn. Mater. 355, 58 (2014).

    Article  CAS  Google Scholar 

  143. J. Xu, C. Shang, W. Ge, H. Jia, P.K. Liaw, and Y. Wang: Effects of elemental addition on the microstructure, thermal stability, and magnetic properties of the mechanically alloyed FeSiBAlNi high entropy alloys. Adv. Powder Technol. 27, 1418 (2016).

    Article  CAS  Google Scholar 

  144. J. Xu, E. Axinte, Z. Zhao, and Y. Wang: Effect of C and Ce addition on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNi high entropy alloys. J. Magn. Magn. Mater. 414, 59 (2016).

    Article  CAS  Google Scholar 

  145. W. Juan Ge, X. Ting Li, P. Li, P. Chao Qiao, J. Wei Du, S. Xu, and Y. Wang: Microstructures and properties of CuZrAl and CuZrAlTi medium entropy alloys prepared by mechanical alloying and spark plasma sintering. J. Iron Steel Res. Int. 24, 448 (2017).

    Article  Google Scholar 

  146. X. Zhu, X. Zhou, S. Yu, C. Wei, J. Xu, and Y. Wang: Effects of annealing on the microstructure and magnetic property of the mechanically alloyed FeSiBAlNiM (M = Co, Cu, Ag) amorphous high entropy alloys. J. Magn. Magn. Mater. 430, 59 (2017).

    Article  CAS  Google Scholar 

  147. S.R. Shatynski: The thermochemistry of transition metal carbides. Oxid. Met. 13, 105 (1979).

    Article  CAS  Google Scholar 

  148. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang: Nanocrystalline CoCrFeNiCuAl high-entropy solid solution synthesized by mechanical alloying. J. Alloys Compd. 485, 34 (2009).

    Article  CAS  Google Scholar 

  149. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang: Characterization of nanocrystalline CoCrFeNiCuAl high-entropy alloy powder processed by mechanical alloying. Mater. Sci. Forum 620–622, 383 (2009).

    Article  Google Scholar 

  150. R. Sriharitha, B.S. Murty, and R.S. Kottada: Phase formation in mechanically alloyed AlxCoCrCuFeNi (x = 0.45, 1, 2.5, 5 mol) high entropy alloys. Intermetallics 32, 119 (2013).

    Article  CAS  Google Scholar 

  151. R. Sriharitha, B.S. Murty, and R.S. Kottada: Alloying, thermal stability and strengthening in spark plasma sintered AlxCoCrCuFeNi high entropy alloys. J. Alloys Compd. 583, 419 (2014).

    Article  CAS  Google Scholar 

  152. B. Niu, W. Ji, N. Li, F. Zhang, and Y. Wu: Alloying and thermal behaviour of CoCrFeNiMn0.5Ti0.5 high-entropy alloy synthesised by mechanical alloying. Mater. Sci. Technol. 32, 94 (2016).

    Article  CAS  Google Scholar 

  153. J. Wang, T. Guo, J. Li, W. Jia, and H. Kou: Microstructure and mechanical properties of non-equilibrium solidified CoCrFeNi high entropy alloy. Mater. Chem. Phys. 210, 192 (2018).

    Article  CAS  Google Scholar 

  154. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu: Microstructure and compressive properties of multiprincipal component AlCoCrFeNiCx alloys. J. Alloys Compd. 509, 3476 (2011).

    Article  CAS  Google Scholar 

  155. Y. Zou, J.M. Wheeler, H. Ma, P. Okle, and R. Spolenak: Nanocrystalline high-entropy alloys: A new paradigm in high-temperature strength and stability. Nano Lett. 17, 1569 (2017).

    Article  CAS  Google Scholar 

  156. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li: Electromagnetic wave absorption properties of FeCoNiCrAl0.8 high entropy alloy powders and its amorphous structure prepared by high-energy ball milling. J. Mater. Res. 31, 2398 (2016).

    Article  CAS  Google Scholar 

  157. J. Moon, Y. Qi, E. Tabachnikova, Y. Estrin, W.M. Choi, S.H. Joo, B.J. Lee, A. Podolskiy, M. Tikhonovsky, and H.S. Kim: Deformation-induced phase transformation of Co20Cr26Fe20Mn20Ni14 high-entropy alloy during high-pressure torsion at 77 K. Mater. Lett. 202, 86 (2017).

    Article  CAS  Google Scholar 

  158. B. Schuh, B. Völker, V. Maier-Kiener, J. Todt, J. Li, and A. Hohenwarter: Phase decomposition of a single-phase AlTiVNb high-entropy alloy after severe plastic deformation and annealing. Adv. Eng. Mater. 19, 1 (2017).

    Article  CAS  Google Scholar 

  159. J. Čížek, P. Haušild, M. Cieslar, O. Melikhova, T. Vlasák, M. Janeček, R. Král, P. Harcuba, F. Lukáč, J. Zýka, and J. Málek: Strength enhancement of high entropy alloy HfNbTaTiZr by severe plastic deformation. J. Alloys Compd. 553, 316 (2018).

    Google Scholar 

  160. W. Wu, S. Ni, Y. Liu, B. Liu, and M. Song: Amorphization at twin-twin intersected region in FeCoCrNi high-entropy alloy subjected to high-pressure torsion. Mater. Charact. 127, 111 (2017).

    Article  CAS  Google Scholar 

  161. A. Kilmametov, R. Kulagin, A. Mazilkin, S. Seils, T. Boll, M. Heilmaier, and H. Hahn: High-pressure torsion driven mechanical alloying of CoCrFeMnNi high entropy alloy. Scr. Mater. 158, 29 (2019).

    Article  CAS  Google Scholar 

  162. H. Shahmir, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Evidence for superplasticity in a CoCrFeNiMn high-entropy alloy processed by high-pressure torsion. Mater. Sci. Eng., A 685, 342 (2017).

    Article  CAS  Google Scholar 

  163. H. Shahmir, T. Mousavi, J. He, Z. Lu, M. Kawasaki, and T.G. Langdon: Microstructure and properties of a CoCrFeNiMn high-entropy alloy processed by equal-channel angular pressing. Mater. Sci. Eng., A 705, 411 (2017).

    Article  CAS  Google Scholar 

  164. F.Y. Shu, S. Liu, H.Y. Zhao, W.X. He, S.H. Sui, J. Zhang, P. He, and B.S. Xu: Structure and high-temperature property of amorphous composite coating synthesized by laser cladding FeCrCoNiSiB high-entropy alloy powder. J. Alloys Compd. 731, 662 (2018).

    Article  CAS  Google Scholar 

  165. P. Yang, Y. Liu, X. Zhao, J. Cheng, and H. Li: Electromagnetic wave absorption properties of mechanically alloyed FeCoNiCrAl high entropy alloy powders. Adv. Powder Technol. 27, 1128 (2016).

    Article  CAS  Google Scholar 

  166. G. Zhu, Y. Liu, and J. Ye: Fabrication and properties of Ti(C, N)-based cermets with multi-component AlCoCrFeNi high-entropy alloys binder. Mater. Lett. 113, 80 (2013).

    Article  CAS  Google Scholar 

  167. Z. Tan, L. Wang, Y. Xue, P. Zhang, T. Cao, and X. Cheng: High-entropy alloy particle reinforced Al-based amorphous alloy composite with ultrahigh strength prepared by spark plasma sintering. Mater. Des. 109, 219 (2016).

    Article  CAS  Google Scholar 

  168. S. Yang, X. Yan, K. Yang, and Z. Fu: Effect of the addition of nano-Al2O3 on the microstructure and mechanical properties of twinned Al0.4FeCrCoNi1.2Ti0.3 alloys. Vacuum 131, 69 (2016).

    Article  CAS  Google Scholar 

  169. K. Vasanthakumar, N.S. Karthiselva, N.M. Chawake, and S.R. Bakshi: Formation of TiCx during reactive spark plasma sintering of mechanically milled Ti/carbon nanotube mixtures. J. Alloys Compd. 709, 829 (2017).

    Article  CAS  Google Scholar 

  170. W. Sun, X. Huang, and A.A. Luo: Phase formations in low density high entropy alloys. Calphad 56, 19 (2017).

    Article  CAS  Google Scholar 

  171. M. Vaidya, G. Mohan Muralikrishna, S.V. Divinski, and B.S. Murty: Experimental assessment of the thermodynamic factor for diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Scr. Mater. 157, 81 (2018).

    Article  CAS  Google Scholar 

  172. M. Vaidya, K.G. Pradeep, B.S. Murty, G. Wilde, and S.V. Divinski: Bulk tracer diffusion in CoCrFeNi and CoCrFeMnNi high entropy alloys. Acta Mater. 146, 211 (2018).

    Article  CAS  Google Scholar 

  173. S.V. Divinski, A. Pokoev, N. Esakkiraja, and A. Paul: A mystery of “sluggish diffusion” in high-entropy alloys: The truth or a myth? arXiv preprint arXiv:1804.03465 (2018).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Budaraju Srinivasa Murty.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vaidya, M., Muralikrishna, G.M. & Murty, B.S. High-entropy alloys by mechanical alloying: A review. Journal of Materials Research 34, 664–686 (2019). https://doi.org/10.1557/jmr.2019.37

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1557/jmr.2019.37

Navigation