Skip to main content
Log in

Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots

  • Mechanochemical Synthesis
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The advancement of nanotechnology demands large-scale preparation of nanocrystalline powder of innovative materials. High-entropy alloys (HEAs) exhibit unique properties: mechanical, thermal, magnetic etc., making them potentials candidates for applications in energy, environment and biomaterials etc. Thus, there is a need to develop novel synthesis methods to prepare nanocrystalline high-purity HEAs in large quantity. Conventional mechanical alloying of the multicomponent metallic powder mixture requires larger milling time and it is prone to contaminations and phase transformation. The present investigation reports a unique approach, involving casting followed by cryomilling, leading to formation of nanocrystalline HEAs powder, which are relatively contaminations free with narrow size distribution. Using examples of two FCC and one BCC single-phase HEAs, it has been shown that large-scale nanocrystalline HEAs powder can be prepared after few hours of cryomilling at 123 K. The formation of nanocrystalline HEAs during cryomilling has been discussed using theoretically available approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Sattler KD (2010) Handbook of nanophysics: nanotubes and nanowires. CRC Press, Boca Raton, pp 1–10

    Google Scholar 

  2. Liu X, Sui Y, Yang X, Wei Y, Zou B (2016) Cu nanowires with clean surfaces: synthesis and enhanced electrocatalytic activity. ACS Appl Mater Interfaces 8(40):26886–26894

    Article  Google Scholar 

  3. Xu Y, Lin X (2007) Facile fabrication and electrocatalytic activity of Pt0.9Pd0.1 alloy film catalysts. J Power Sources 170(1):13–19

    Article  Google Scholar 

  4. Huang X, El-Sayed MA (2010) Gold nanoparticles: optical properties and implementations in cancer diagnosis and photothermal therapy. J Adv Res 1(1):13–28

    Article  Google Scholar 

  5. Li XD, Chen TP, Liu Y, Leong KC (2014) Influence of localized surface plasmon resonance and free electrons on the optical properties of ultrathin Au films: a study of the aggregation effect. Opt Express 22(5):5124–5132

    Article  Google Scholar 

  6. Tsai T-T, Huang T-H, Chang C-J, Yi-Ju Ho N, Tseng Y-T, Chen C-F (2017) Antibacterial cellulose paper made with silver-coated gold nanoparticles. Sci Rep 7(1):3155-1–3155-10

    Article  Google Scholar 

  7. Cloutier M, Mantovani D, Rosei F (2015) Antibacterial coatings: challenges, perspectives, and opportunities. Trends Biotechnol 33(11):637–652

    Article  Google Scholar 

  8. Yang H-W, Chung C-M, Ding JY (2007) Effect of Ni doping on the structural and magnetic properties of FePt nanoparticles. J Magn Magn Mater 312(1):239–244

    Article  Google Scholar 

  9. Travan A, Marsich E, Donati I, Paoletti S (2007) Silver nanocomposites and their biomedical applications. In: Nanotechnologies for the life sciences, pp 81–127

  10. Patskovsky S, Bergeron E, Rioux D, Simard M, Meunier M (2014) Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. Analyst 139(20):5247–5253

    Article  Google Scholar 

  11. Jiang H, Moon KS, Wong CP (2008) Tin/silver/copper alloy nanoparticle pastes for low temperature lead-free interconnect applications. In: Proceedings—electronic components and technology conference, pp 1400–1404

  12. Naoe M, Matsumiya H, Ichihara T, Nakagawa S (1998) Preparation of soft magnetic films of nanocrystalline Fe–Cu–Nb–Si–B alloy by facing targets sputtering. J Appl Phys 83(11):6673–6675

    Article  Google Scholar 

  13. Cantor B (2014) Multicomponent and high entropy alloys. Entropy 16(9):4749–4768

    Article  Google Scholar 

  14. Samal S, Mohanty S, Mishra AK, Biswas K, Govind B (2014) Mechanical properties of novel Ti–Cu–Ni–Co–Fe high entropy alloys. Mater Sci Forum 790–791:503–508

    Article  Google Scholar 

  15. Mohanty S, Samal S, Tazuddin A, Twari C, Gurao N, Biswas K (2015) Effect of processing route on phase stability in equiatomic multicomponent Ti20Fe20Ni20Co20Cu20 high entropy alloy. Mater Sci Technol 31:1214–1222

    Article  Google Scholar 

  16. Mohanty S, Gurao NP, Biswas K (2014) Sinter ageing of equiatomic Al20Co20Cu20Zn20Ni20 high entropy alloy via mechanical alloying. Mater Sci Eng A 617:211–218

    Article  Google Scholar 

  17. Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim - Sci Mat 31(6):633–648

    Article  Google Scholar 

  18. Tsai KY, Tsai MH, Yeh JW (2013) Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Mater 61(13):4887–4897

    Article  Google Scholar 

  19. Mishra A, Samal S, Biswas K (2012) Solidification behaviour of Ti–Cu–Fe–Co–Ni high entropy alloys. Trans Indian Inst Met 65(6):725–730

    Article  Google Scholar 

  20. Murty BS, Yeh JW, Ranganathan S (2014) High-entropy alloys: basic concepts. In: High entropy alloys. Butterworth-Heinemann, Boston, pp 13–35

  21. Zhou Y, Zhou D, Jin X, Zhang L, Du X, Li B (2018) Design of non-equiatomic medium-entropy alloys. Sci Rep 8(1):1236-1–1236-9

    Google Scholar 

  22. Murty BS, Yeh JW, Ranganathan S (2014) A brief history of alloys and the birth of high-entropy alloys. In: High entropy alloys. Butterworth-Heinemann, Boston, pp 1–12

  23. Miracle DB, Senkov ON (2017) A critical review of high entropy alloys and related concepts. Acta Mater 122(Supplement C):448–511

    Article  Google Scholar 

  24. Pickering EJ, Jones NG (2016) High-entropy alloys: a critical assessment of their founding principles and future prospects. Int Mater Rev 61(3):183–202

    Article  Google Scholar 

  25. Gao MC, Yeh JW, Liaw PK, Zhang Y (2016) High-entropy alloys: fundamentals and applications. Springer, Berlin, pp 1–19

    Book  Google Scholar 

  26. Zhang W, Liaw PK, Zhang Y (2018) Science and technology in high-entropy alloys. Sci China Mater 61(1):2–22

    Article  Google Scholar 

  27. Li RX, Liaw PK, Zhang Y (2017) Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng A 707:668–673

    Article  Google Scholar 

  28. Otto F, Dlouhý A, Somsen C, Bei H, Eggeler G, George EP (2013) The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater 61(15):5743–5755

    Article  Google Scholar 

  29. Gludovatz B, Hohenwarter A, Catoor D, Chang EH, George EP, Ritchie RO (2014) A fracture-resistant high-entropy alloy for cryogenic applications. Science 345(6201):1153–1158

    Article  Google Scholar 

  30. Na SM, Yoo JH, Lambert PK, Jones NJ (2018) Room-temperature ferromagnetic transitions and the temperature dependence of magnetic behaviors in FeCoNiCr-based high-entropy alloys. AIP Adv 8(5):056412-1–056412-7

    Article  Google Scholar 

  31. Huo W, Liu X, Tan S, Fang F, Xie Z, Shang J, Jiang J (2018) Ultrahigh hardness and high electrical resistivity in nano-twinned, nanocrystalline high-entropy alloy films. Appl Surf Sci 439:222–225

    Article  Google Scholar 

  32. Praveen S, Kim HS (2018) High-entropy alloys: potential candidates for high-temperature applications—an overview. Adv Eng Mater 20(1):1700645-1–1700645-22

    Google Scholar 

  33. Kumar A, Gupta M (2016) An insight into evolution of light weight high entropy alloys: a review. Metals 6(9):1–19

    Article  Google Scholar 

  34. Ye YF, Wang Q, Lu J, Liu CT, Yang Y (2016) High-entropy alloy: challenges and prospects. Mater Today 19(6):349–362

    Article  Google Scholar 

  35. Zhang Y, Zhang B, Li K, Zhao G-L, Guo SM (2018) Electromagnetic interference shielding effectiveness of high entropy AlCoCrFeNi alloy powder laden composites. J Alloys Compd 734:220–228

    Article  Google Scholar 

  36. Yadav S, Kumar A, Biswas K (2017) Wear behavior of high entropy alloys containing soft dispersoids (Pb, Bi). Mater Chem Phys 210:222–232

    Article  Google Scholar 

  37. Vaidya M, Prasad A, Parakh A, Murty BS (2017) Influence of sequence of elemental addition on phase evolution in nanocrystalline AlCoCrFeNi: novel approach to alloy synthesis using mechanical alloying. Mater Des 126:37–46

    Article  Google Scholar 

  38. Biswas K, Phanikumar G, Chattopadhyay K, Volkmann T, Funke O, Holland-Moritz D, Herlach DM (2004) Rapid solidification behaviour of undercooled levitated Fe–Ge alloy droplets. Mater Sci Eng A 375-377(Supplement C):464–467

    Article  Google Scholar 

  39. Biswas K, Phanikumar G, Holland-Moritz D, Herlach DM, Chattopadhyay K (2007) Disorder trapping and grain refinement during solidification of undercooled Fe–18 at.% Ge melts. Philos Mag 87(25):3817–3837

    Article  Google Scholar 

  40. Fecht HJ (1995) Nanostructure formation by mechanical attrition. Nanostruct Mater 6(1–4):33–42

    Article  Google Scholar 

  41. Verma A, Biswas K, Tiwary C, Mondal A, Chattopadhyay K (2011) Combined cryo and room-temperature ball milling to produce ultrafine halide crystallites. Metall Mater Trans A 42(4):1127–1137

    Article  Google Scholar 

  42. Tiwary C, Verma A, Kashyp S, Biswas K, Chattopadhyay K (2013) Preparation of freestanding Zn nanocrystallites by combined milling at cryogenic and room temperatures. Metall Mater Trans A 44(4):1917–1924

    Article  Google Scholar 

  43. Tiwary CS, Verma A, Biswas K, Mondal AK, Chattopadhyay K (2011) Preparation of ultrafine CsCl crystallites by combined cryogenic and room temperature ball milling. Ceram Int 37(8):3677–3686

    Article  Google Scholar 

  44. Barai K, Tiwary CS, Chattopadhyay PP, Chattopadhyay K (2012) Synthesis of free standing nanocrystalline Cu by ball milling at cryogenic temperature. Mater Sci Eng A 558:52–58

    Article  Google Scholar 

  45. Tiwary CS, Kashyap S, Biswas K, Chattopadhyay K (2013) Synthesis of pure iron magnetic nanoparticles in large quantity. J Phys D Appl Phys 46(38):385001–385005

    Article  Google Scholar 

  46. Murty BS, Yeh JW, Ranganathan S (2014) Applications and future directions. In: High entropy alloys. Butterworth-Heinemann, Boston, pp 159–169

  47. Kumar N, Biswas K (2015) Fabrication of novel cryomill for synthesis of high purity metallic nanoparticles. Rev Sci Instrum 86(8):083903–083908

    Article  Google Scholar 

  48. Cantor B, Chang ITH, Knight P, Vincent AJB (2004) Microstructural development in equiatomic multicomponent alloys. Mater Sci Eng A 375-377(1-2 SPEC. ISS.):213–218

    Article  Google Scholar 

  49. Williamson GK, Hall WH (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1(1):22–31

    Article  Google Scholar 

  50. Langford JI, Wilson AJC (1978) Scherrer after sixty years: a survey and some new results in the determination of crystallite size. J Appl Crystallogr 11(2):102–113

    Article  Google Scholar 

  51. Shpacovitch V (2012) Application of surface plasmon resonance (SPR) for the detection of single viruses and single biological nano-objects. J Bacteriol Parasitol 3(7):1–3

    Google Scholar 

  52. Messina GC, Sinatra MG, Bonanni V, Brescia R, Alabastri A, Pineider F, Campo G, Sangregorio C, Li-Destri G, Sfuncia G, Marletta G, Condorelli M, Proietti Zaccaria R, De Angelis F, Compagnini G (2016) Tuning the composition of alloy nanoparticles through laser mixing: the role of surface plasmon resonance. J Phys Chem C 120(23):12810–12818

    Article  Google Scholar 

  53. Linic S, Aslam U, Boerigter C, Morabito M (2015) Photochemical transformations on plasmonic metal nanoparticles. Nat Mater 14(6):567–576

    Article  Google Scholar 

  54. Rak MJ, Friscic T, Moores A (2016) One-step, solvent-free mechanosynthesis of silver nanoparticle-infused lignin composites for use as highly active multidrug resistant antibacterial filters. RSC Adv 6(63):58365–58370

    Article  Google Scholar 

  55. Bell GM, Levine S (1976) The electrostrictive effect in diffuse charged layers. J Colloid Interface Sci 56(2):218–226

    Article  Google Scholar 

  56. Kumar N, Biswas K, Gupta RK (2016) Green synthesis of Ag nanoparticles in large quantity by cryomilling. RSC Advances 6(112):111380–111388

    Article  Google Scholar 

  57. Goujon C, Goeuriot P, Delcroix P, Le Caër G (2001) Mechanical alloying during cryomilling of a 5000 Al alloy/AlN powder: the effect of contamination. J Alloys Compd 315(1–2):276–283

    Article  Google Scholar 

  58. Blewitt TH, Coltman RR, Redman JK (1957) Low-temperature deformation of copper single crystals. J Appl Phys 28(6):651–660

    Article  Google Scholar 

  59. Wigley DA (1968) Mechanical properties of materials at low temperatures. Cryogenics 8(1):3–12

    Article  Google Scholar 

  60. Hallén H (1985) A theory of dynamic recovery in F.C.C. metals. Mater Sci Eng 72(2):119–123

    Article  Google Scholar 

  61. Sharma P, Biswas K, Mondal AK, Chattopadhyay K (2009) Size effect on the lattice parameter of KCl during mechanical milling. Scr Mater 61(6):600–603

    Article  Google Scholar 

  62. Rhodin TN (1950) Low temperature oxidation of copper. I. Physical mechanism. J Am Chem Soc 72(11):5102–5106

    Article  Google Scholar 

  63. Kumar N, Biswas K (2017) Cryomilling: an environment friendly approach of preparation large quantity ultra refined pure aluminium nanoparticles. J Mater Res Technol (in press). https://doi.org/10.1016/j.jmrt.2017.05.017

  64. Deepika A, Li LH, Glushenkov AM, Hait SK, Hodgson P, Chen Y (2014) High-efficient production of boron nitride nanosheets via an optimized ball milling process for lubrication in oil. Sci Rep 4:7288-1–7288-6

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank SERB-DST for their financial support to carry out this work and wish to thank Advanced Center for Materials Science, Indian Institute of Technology Kanpur for utilizing X-ray diffraction facility.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Krishanu Biswas.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, N., Tiwary, C.S. & Biswas, K. Preparation of nanocrystalline high-entropy alloys via cryomilling of cast ingots. J Mater Sci 53, 13411–13423 (2018). https://doi.org/10.1007/s10853-018-2485-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-018-2485-z

Keywords

Navigation