Skip to main content
Log in

Examination of Solid-Solution Phase Formation Rules for High Entropy Alloys from Atomistic Monte Carlo Simulations

  • Published:
JOM Aims and scope Submit manuscript

Abstract

In this study, we used atomistic simulation methods to examine solid-solution phase formation rules for CoCrFeNi high entropy alloy. Using the Monte Carlo simulations based on the modified embedded atom method (MEAM) potentials, we sampled the thermodynamically equilibrium structures of the CoCrFeNi alloy and further predicted that the CoCrFeNi alloy could form a solid solution phase with high configurational entropy of 1.329R at 1373 K. Furthermore, we examined the stability of this solid solution phase of the CoCrFeNi alloy against the well-recognized solid-solution phase formation rules by varying the MEAM potentials and thus tuning the atom size and mixing enthalpy in the alloy. Our simulation results revealed that it required atom size difference effect \( \left| \delta \right| < 0.05 \) and mixing enthalpy effect −10 kJ/mol < ΔH ≈ 0 kJ/mol for the modeled CoCrFeNi alloy to remain a single solid solution phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. J.-W. Yeh, S.-K. Chen, S.-J. Lin, J.-Y. Gan, T.-S. Chin, T.-T. Shun, C.-H. Tsau, and S.-Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  2. B. Cantor, I.T.H. Chang, P. Knight, and A.J.B. Vincent, Mater. Sci. Eng. A 375–377, 213 (2004).

    Article  Google Scholar 

  3. W.R. Wang, W.L. Wang, S.C. Wang, Y.C. Tsai, C.H. Lai, and J.W. Yeh, Intermetallics 26, 44–51 (2012).

    Article  Google Scholar 

  4. H. Zhang, Y.Z. He, Y. Pan, and S. Guo, J. Alloys Compd. 600, 210 (2014).

    Article  Google Scholar 

  5. Y.J. Zhou, Y. Zhang, Y.L. Wang, and G.L. Chen, Appl. Phys. Lett. 90, 181904 (2007).

    Article  Google Scholar 

  6. H. Zhang, Y.Z. He, and Y. Pan, Scripta Mater. 69, 342 (2013).

    Article  Google Scholar 

  7. M.A. Hemphill, T. Yuan, G.Y. Wang, J.W. Yeh, C.W. Tsai, A. Chuang, and P.K. Liaw, Acta Mater. 60, 5723 (2012).

    Article  Google Scholar 

  8. Y.Y. Chen, U.T. Hong, H.C. Shih, J.W. Yeh, and T. Duval, Corros. Sci. 47, 2679 (2005).

    Article  Google Scholar 

  9. Y. Zhang, T.T. Zuo, Y.Q. Cheng, and P.K. Liaw, Sci. Rep. 3, 1455 (2013).

    Google Scholar 

  10. Y. Zhang, T.T. Zuo, Z. Tang, M.C. Gao, K.A. Dahmen, P.K. Liaw, and Z.P. Lu, Prog. Mater Sci. 61, 1 (2014).

    Article  Google Scholar 

  11. S. Guo, Q. Hu, C. Ng, and C.T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  12. X. Yang and Y. Zhang, Mater. Chem. Phys. 132, 233 (2012).

    Article  Google Scholar 

  13. Z. Tang, M.C. Gao, H. Diao, T. Yang, J. Liu, T. Zuo, Y. Zhang, Z. Lu, Y. Cheng, Y. Zhang, K.A. Dahmen, P.K. Liaw, and T. Egami, JOM 65, 1848 (2013).

    Article  Google Scholar 

  14. M.C. Gao and D.E. Alman, Entropy 15, 4504 (2013).

    Article  Google Scholar 

  15. S.C. Middleburgh, D.M. King, and G.R. Lumpkin, R. Soc. Open Sci. 2, 140292 (2015).

    Article  Google Scholar 

  16. M.S. Lucas, G.B. Wiks, L. Mauger, J.A. Munoz, O.N. Senkov, E. Michel, J. Horwath, S.L. Semiatin, M.B. Stone, D.L. Abernathy, and E. Karapetrova, Appl. Phys. Lett. 100, 251907 (2012).

    Article  Google Scholar 

  17. R.W. Cahn and P. Hanssen, Physical Metallurgy, 4th ed., Vol. 1 (North Holland: Amsterdam, 1996).

    Google Scholar 

  18. F. Otto, Y. Yang, H. Bei, and E.P. George, Acta Mater. 61, 2628–2638 (2013).

    Article  Google Scholar 

  19. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, and P.K. Liaw, Adv. Eng. Mater. 10, 534–538 (2008).

    Article  Google Scholar 

  20. S. Guo, C. Ng, J. Lu, and C.T. Liu, J. Appl. Phys. 109, 103505 (2011).

    Article  Google Scholar 

  21. M.I. Baskes, Phys. Rev. B 46, 2727 (1992).

    Article  Google Scholar 

  22. B. Lee, M.I. Baskes, H. Kim, and Y.K. Cho, Phys. Rev. B 64, 184102 (2000).

    Article  Google Scholar 

  23. M.I. Baskes, Mater. Chem. Phys. 50, 152 (1997).

    Article  Google Scholar 

  24. M.I. Baskes and R.A. Johnson, Model. Simul. Mater. Sci. Eng. 2, 147 (1994).

    Article  Google Scholar 

  25. G. Kresse and J. Hafner, Phys. Rev. B 47, 558 (1993).

    Article  Google Scholar 

  26. G. Kresse and J. Furthmuller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  27. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  Google Scholar 

  28. J.P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  Google Scholar 

  29. H.J. Monkhorst and J.D. Pack, Phys. Rev. B 13, 5188 (1976).

    Article  MathSciNet  Google Scholar 

  30. F.G. Sen, A.T. Alpas, A.C.T. van Duin, and Y. Qi, Nat. Commun. 5, 3959 (2014).

    Article  Google Scholar 

  31. Y. Kim, J. Lee, M.S. Yeom, J.W. Shin, H. Kim, Y. Cui, J.W. Kysar, J. Hone, Y. Jung, S. Jeon, and S.M. Han, Nat. Commun. 4, 2114 (2013).

    Google Scholar 

  32. N. Metropolis, A.W. Rosenbluth, M.N. Rosenbluth, A.H. Teller, and E. Teller, J. Chem. Phys. 21, 1087 (1953).

    Article  Google Scholar 

  33. Y.-F. Kao, T.-J. Chen, S.-K. Chen, and J.-W. Yen, J. Alloys Compd. 488, 57 (2009).

    Article  Google Scholar 

  34. G. Wang, M.A. Van Hove, P.N. Ross, and M.I. Baskes, Prog. Surf. Sci. 79, 28 (2005).

    Google Scholar 

  35. Z. Duan and G. Wang, J. Phys. Condens. Matter 23, 475301 (2011).

    Article  Google Scholar 

  36. M. de Koning and A. Antonelli, Phys. Rev. E 53, 465 (1996).

    Article  Google Scholar 

  37. A.J. Zaddach, C. Niu, C.C. Koch, and D.L. Irving, JOM 65, 1780–1789 (2013).

    Article  Google Scholar 

  38. A. Gali and E.P. George, Intermetallics 39, 74 (2013).

    Article  Google Scholar 

  39. M.S. Lucas, L. Mauger, J.A. Munoz, Y. Xiao, A.O. Sheets, S.L. Semiatin, J. Horwath, and Z. Turgut, J. Appl. Phys. 109, 07E307 (2011).

    Article  Google Scholar 

  40. S.C. Middleburgh, D.M. King, G.R. Lumpkin, M. Cortie, and L. Edwards, J. Alloy. Compd. 599, 179 (2014).

    Article  Google Scholar 

  41. C. Niu, A.J. Zaddach, A.A. Oni, X. Sang, J.W. Hurt III, J.M. Lebeau, C.C. Koch, and D.L. Irving, Appl. Phys. Lett. 106, 161906 (2015).

    Article  Google Scholar 

  42. Y. Brif, M. Thomas, and I. Todd, Scr. Mater. 99, 93 (2015).

    Article  Google Scholar 

Download references

Acknowledgements

G.F. Wang would like to acknowledge the research grants from U.S. Department of Energy (Grant No. DE-FG02-09ER16093) and National Science Foundation (Grant No. DMR-1410597). The authors gratefully acknowledge the computational resources provided by the computer facility at Center for Simulation and Modeling of the University of Pittsburgh and at the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guofeng Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Lei, Y., Gray, C. et al. Examination of Solid-Solution Phase Formation Rules for High Entropy Alloys from Atomistic Monte Carlo Simulations. JOM 67, 2364–2374 (2015). https://doi.org/10.1007/s11837-015-1508-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11837-015-1508-3

Keywords

Navigation