Skip to main content
Log in

Phase Evolution and Mechanical Properties of AlCoCrFeNiSix High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering

  • Published:
Journal of Materials Engineering and Performance Aims and scope Submit manuscript

Abstract

In the current investigation, AlCoCrFeNiSix (x = 0, 0.3, 0.6 and 0.9 in atomic ratio) high-entropy alloy systems are prepared by mechanical alloying and subsequently consolidated by spark plasma sintering. The microstructural and mechanical properties were analyzed to understand the effect of Si addition in AlCoCrFeNi alloy. The x-ray diffraction analysis reveals the supersaturated solid solution of the body-centered cubic structure after 20 h of ball milling. However, the consolidation promotes the transformation of body-centered phases partially into the face-centered cubic structure and sigma phases. A recently proposed geometric model based on the atomic stress theory has been extended for the first time to classify single phase and multi-phases on the high-entropy alloys prepared by mechanical alloying and spark plasma sintering process. Improved microhardness and better wear resistance were achieved as the Si content increased from 0 to 0.9 in the present high-entropy alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, J. Shi, W.M. Wang, H. Wang, Y.C. Wang, and Q.J. Zhang, Nanocrystalline CoCrFeNiCuAl High-Entropy Solid Solution Synthesized by Mechanical Alloying, J. Alloys Compd., 2009, 485(1–2), p 34–37

    Article  Google Scholar 

  2. C.H. Lai, S.J. Lin, J.W. Yeh, and S.Y. Chang, Preparation, and Characterization of AlCrTaTiZr Multi-element Nitride Coatings, Surf. Coat. Technol., 2006, 201(6), p 3275–3280

    Article  Google Scholar 

  3. J.B. Cheng, X.B. Liang, and B.S. Xu, Effect of Nb Addition on the Structure and Mechanical Behaviors of CoCrCuFeNi High-Entropy Alloy Coatings, Surf. Coat. Technol., 2014, 240, p 184–190

    Article  Google Scholar 

  4. T.K. Chen, M.S. Wong, T.T. Shun, and J.W. Yeh, Nanostructured Nitride Films of Multi-Element High-Entropy Alloys by Reactive DC Sputtering, Surf. Coat. Technol., 2005, 200(5–6), p 1361–1365

    Article  Google Scholar 

  5. J.B. Cheng, X.B. Liang, Z.H. Wang, and B.S. Xu, Formation and Mechanical Properties of CoNiCuFeCr High-Entropy Alloys Coatings Prepared by Plasma Transferred Arc Cladding Process, Plasma Chem. Plasma Process., 2013, 33(5), p 979–992

    Article  Google Scholar 

  6. C. Suryanarayana, E. Ivanov, and V. Boldyrev, The Science and Technology of Mechanical Alloying, Mater. Sci. Eng. A, 2001, 304–306, p 151–158

    Article  Google Scholar 

  7. X. Liu, W. Lei, L. Ma, J. Liu, J. Liu, and J. Cui, On the Microstructures, Phase Assemblages and Properties of Al0.5CoCrCuFeNiSix High-Entropy Alloys, J. Alloys Compd., 2015, 630, p 151–157

    Article  Google Scholar 

  8. A. Kumar, P. Dhekne, A. Kumar, and M. Kumar, Analysis of Si Addition on Phase Formation in AlCoCrCuFeNiSix High Entropy Alloys, Mater. Lett., 2017, 188, p 73–76

    Article  Google Scholar 

  9. S. Mohanty, S. Samal, A. Tazuddin, C.S. Tiwary, N.P. Gurao, and K. Biswas, Effect of Processing Route on Phase Stability in Equiatomic Multicomponent Ti20Fe20Ni20Co20Cu20 High Entropy Alloy, Mater. Sci. Technol., 2015, 31(10), p 1214–1222

    Article  Google Scholar 

  10. C. Zhang, G.F. Wu, and P.Q. Dai, Phase Transformation and Aging Behavior of Al0.5CoCrFeNiSi0.2 High-Entropy Alloy, J. Mater. Eng. Perform., 2015, 24(5), p 1918–1925

    Article  Google Scholar 

  11. S. Mohanty, T.N. Maity, S. Mukhopadhyay, S. Sarkar, N.P. Gurao, S. Bhowmick, and K. Biswas, Powder Metallurgical Processing of Equiatomic AlCoCrFeNi High Entropy Alloy: Microstructure and Mechanical Properties, Mater. Sci. Eng. A, 2017, 679, p 299–313

    Article  Google Scholar 

  12. W. Ji, Z. Fu, W. Wang, H. Wang, J. Zhang, Y. Wang, and F. Zhang, Mechanical Alloying Synthesis and Spark Plasma Sintering Consolidation of CoCrFeNiAl High-Entropy Alloy, J. Alloys Compd., 2014, 589, p 61–66

    Article  Google Scholar 

  13. D.A. Porter and K.E. Easterling, Phase Transformations in Metals and Alloys, 3rd ed., CRC Press, London, 2014, p 138

    Google Scholar 

  14. F.J. Wang and Y. Zhang, Effect of Co Addition on Crystal Structure and Mechanical Properties of Ti0.5CrFeNiAlCo High Entropy Alloy, Mater. Sci. Eng. A, 2008, 496(1–2), p 214–216

    Article  Google Scholar 

  15. S. Park and S. Lee, Electronegativity Values from Thermochemical Data, J. Inorg. Nucl. Chem., 1995, 17, p 265–268

    Google Scholar 

  16. S. Varalakshmi, M. Kamaraj, and B.S. Murty, Synthesis and Characterization of Nanocrystalline AlFeTiCrZnCu High Entropy Solid Solution by Mechanical Alloying, J. Alloys Compd., 2008, 460(1), p 253–257

    Article  Google Scholar 

  17. G.K. Rane, U. Welzel, S.R. Meka, and E.J. Mittemeijer, Non-monotonic Lattice Parameter Variation with Crystallite Size in Nanocrystalline Solids, Acta Mater., 2013, 61(12), p 4524–4533

    Article  Google Scholar 

  18. A.K. Srivastav, N. Chawake, and B.S. Murty, Grain-Size-Dependent Non-monotonic Lattice Parameter Variation in Nanocrystalline W: The Role of Non-equilibrium Grain Boundary Structure, Scr. Mater., 2015, 98, p 20–23

    Article  Google Scholar 

  19. H.X. Sui, M. Zhu, M. Qi, G.B. Li, and D.Z. Yang, The Enhancement of Solid Solubility Limits of AlCo Intermetallic Compound by High-Energy Ball Milling, J. Appl. Phys., 1992, 71(6), p 2945–2949

    Article  Google Scholar 

  20. Z. Fu, W. Chen, H. Xiao, L. Zhou, D. Zhu, and S. Yang, Fabrication and Properties of Nanocrystalline Co0.5FeNiCrTi0.5 High Entropy Alloy by MA-SPS Technique, Mater. Des., 2013, 44, p 535–539

    Article  Google Scholar 

  21. F. Graner and J.A. Lazier, Mechanically Driven Alloying of Immiscible Elements, Phys. Rev. Lett., 1992, 69(13), p 2013–2016

    Article  Google Scholar 

  22. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3, p 1455

    Article  Google Scholar 

  23. C.C. Tung, J.W. Yeh, T.T. Shun, S.K. Chen, Y.S. Huang, and H.C. Chen, On the Elemental Effect of AlCoCrCuFeNi High-Entropy Alloy System, Mater. Lett., 2007, 61(1), p 1–5

    Article  Google Scholar 

  24. H.-P.P. Chou, Y.-S.S. Chang, S.-K.K. Chen, and J.-W.W. Yeh, Microstructure, Thermophysical and Electrical Properties in AlxCoCrFeNi (0 ≤ x ≤ 2) High-Entropy Alloys, Mater. Sci. Eng. B Solid-State Mater. Adv. Technol., 2009, 163(3), p 184–189

    Article  Google Scholar 

  25. C. Li, J.C. Li, M. Zhao, and Q. Jiang, Effect of Alloying Elements on Microstructure and Properties of Multi-principal Elements High-Entropy Alloys, J. Alloys Compd., 2009, 475(1–2), p 752–757

    Article  Google Scholar 

  26. S. Praveen, B.S. Murty, and R.S. Kottada, Alloying Behavior in Multi-component AlCoCrCuFe and NiCoCrCuFe High Entropy Alloys, Mater. Sci. Eng. A, 2012, 534, p 83–89

    Article  Google Scholar 

  27. W. Chen, Z. Fu, S. Fang, H. Xiao, and D. Zhu, Alloying Behavior, Microstructure and Mechanical Properties in a FeNiCrCo0.3Al0.7 High Entropy Alloy, Mater. Des., 2013, 51, p 854–860

    Article  Google Scholar 

  28. K.B. Zhang, Z.Y. Fu, J.Y. Zhang, W.M. Wang, S.W. Lee, and K. Niihara, Characterization of Nanocrystalline CoCrFeNiTiAl High-Entropy Solid Solution Processed by Mechanical Alloying, J. Alloys Compd., 2010, 495(1), p 33–38

    Article  Google Scholar 

  29. M. Victoria, N. Baluc, C. Bailat, Y. Dai, M.I. Luppo, and R. Sch, The Microstructure and Associated Tensile Properties of Irradiated Fcc and Bcc Metals, J. Nucl. Mater., 2000, 276, p 114–122

    Article  Google Scholar 

  30. Y. Zhang, T. Zuo, Y. Cheng, and P.K. Liaw, High-Entropy Alloys with High Saturation Magnetization, Electrical Resistivity, and Malleability, Sci. Rep., 2013, 3(1455), p 1–7

    Google Scholar 

  31. A. Takeuchi and A. Inoue, Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys, JIM Mater. Trans., 2000, 41, p 1372–1378

    Article  Google Scholar 

  32. A. Takeuchi and A. Inoue, Classification of Bulk Metallic Glasses by Atomic Size Difference, Heat of Mixing and Period of Constituent Elements and Its Application to Characterization of the Main Alloying Element, Mater. Trans., 2005, 46(12), p 2817–2829

    Article  Google Scholar 

  33. P. Wang, H. Cai, and X. Cheng, Effect of Ni/Cr Ratio on Phase, Microstructure and Mechanical Properties of NixCoCuFeCr2−X (X = 1.0, 1.2, 1.5, 1.8 Mol) High Entropy Alloys, J. Alloys Compd., 2016, 662, p 20–31

    Article  Google Scholar 

  34. M.H. Tsai, K.Y. Tsai, C.W. Tsai, C. Lee, C.C. Juan, and J.W. Yeh, Criterion for Sigma Phase Formation in Cr- and V-Containing High-Entropy Alloys, Mater. Res. Lett., 2013, 1(4), p 207–212

    Article  Google Scholar 

  35. M.H. Tsai, K.C. Chang, J.H. Li, R.C. Tsai, and A.H. Cheng, A Second Criterion for Sigma Phase Formation in High-Entropy Alloys, Mater. Res. Lett., 2016, 4(2), p 90–95

    Article  Google Scholar 

  36. J.M. Zhu, H.M. Fu, H.F. Zhang, A.M. Wang, H. Li, and Z.Q. Hu, Synthesis, and Properties of Multi-principal Component AlCoCrFeNiSix Alloys, Mater. Sci. Eng. A, 2010, 527(27–28), p 7210–7214

    Article  Google Scholar 

  37. F.J. Baldenebro-Lopez, J.M. Herrera-ramírez, S.P. Arredondo-rea, and C.D. Gómez-Esparza, Simultaneous Effect of Mechanical Alloying and Arc-Melting Processes in the Microstructure and Hardness of an AlCoFeMoNiTi High-Entropy Alloy, J. Alloys Compd., 2015, 643, p S250–S255

    Article  Google Scholar 

  38. J.W. Yeh, Y.L. Chen, S.J. Lin, and S.K. Chen, High-Entropy Alloys—A New Era of Exploitation, Mater. Sci. Forum, 2007, 560, p 1–9

    Article  Google Scholar 

  39. Y. Dong, Y. Lu, J. Kong, J. Zhang, and T. Li, Microstructure and Mechanical Properties of Multi-Component AlCrFeNiMoX High-Entropy Alloys, J. Alloys Compd., 2013, 573, p 96–101

    Article  Google Scholar 

  40. S. Guo, C. Ng, J. Lu, and C.T. Liu, Effect of Valence Electron Concentration on Stability of Fcc or Bcc Phase in High Entropy Alloys, J. Appl. Phys., 2011, 109(10), p 103505

    Article  Google Scholar 

  41. X. Yang and Y. Zhang, Prediction of High-Entropy Stabilized Solid-Solution in Multi-component Alloys, Mater. Chem. Phys., 2012, 132(2–3), p 233–238

    Article  Google Scholar 

  42. S. Guo and C.T. Liu, Phase Stability in High Entropy Alloys: Formation of Solid-Solution Phase or Amorphous Phase, Prog. Nat. Sci. Mater. Int., 2011, 21(6), p 433–446

    Article  Google Scholar 

  43. R. Raghavan, K.C. Hari Kumar, and B.S. Murty, Analysis of Phase Formation in Multi-component Alloys, J. Alloys Compd., 2012, 544, p 152–158

    Article  Google Scholar 

  44. Y.F. Ye, C.T. Liu, and Y. Yang, A Geometric Model for Intrinsic Residual Strain and Phase Stability in High Entropy Alloys, Acta Mater., 2015, 94, p 152–161

    Article  Google Scholar 

  45. Z. Chen, W. Chen, B. Wu, X. Cao, L. Liu, and Z. Fu, Effects of Co and Ti on Microstructure and Mechanical Behavior of Al0.75FeNiCrCo High Entropy Alloy Prepared by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2015, 648, p 217–224

    Article  Google Scholar 

  46. S. Fang, W. Chen, and Z. Fu, Microstructure and Mechanical Properties of Twinned Al0.5CrFeNiCo0.3C0.2 High Entropy Alloy Processed by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2014, 54, p 973–979

    Article  Google Scholar 

  47. Z.Q. Fu, W.P. Chen, S.C. Fang, D.Y. Zhang, H.Q. Xiao, and D.Z. Zhu, Alloying Behavior and Deformation Twinning in a CoNiFeCrAl0.6Ti0.4 High Entropy Alloy Processed by Spark Plasma Sintering, J. Alloys Compd., 2013, 553, p 316–323

    Article  Google Scholar 

  48. C. Wang, W. Ji, and Z. Fu, Mechanical Alloying and Spark Plasma Sintering of CoCrFeNiMnAl High-Entropy Alloy, Adv. Powder Technol., 2014, 25(4), p 1334–1338

    Article  Google Scholar 

  49. I. Moravcik, J. Cizek, P. Gavendova, S. Sheikh, S. Guo, and I. Dlouhy, Effect of Heat Treatment on Microstructure and Mechanical Properties of Spark Plasma Sintered AlCoCrFeNiTi0.5 High Entropy Alloy, Mater. Lett., 2016, 174, p 53–56

    Article  Google Scholar 

  50. Z. Fu, W. Chen, H. Wen, S. Morgan, F. Chen, B. Zheng, Y. Zhou, L. Zhang, and E.J. Lavernia, Microstructure and Mechanical Behavior of a Novel Co20Ni20Fe20Al20Ti20 Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Mater. Sci. Eng. A, 2015, 644, p 10–16

    Article  Google Scholar 

  51. S. Mohanty, N.P. Gurao, and K. Biswas, Sinter Ageing of Equiatomic Al20Co20Cu20Zn20Ni20 High Entropy Alloy via Mechanical Alloying, Mater. Sci. Eng. A, 2014, 617, p 211–218

    Article  Google Scholar 

  52. P. Wang, H. Cai, S. Zhou, and L. Xu, Processing, Microstructure and Properties of Ni1.5CoCuFeCr0.5−xVx High Entropy Alloys with Carbon Introduced from Process Control Agent, J. Alloys Compd., 2017, 695, p 462–475

    Article  Google Scholar 

  53. Z. Fu, W. Chen, S. Fang, and X. Li, Effect of Cr Addition on the Alloying Behavior, Microstructure and Mechanical Properties of Twinned CoFeNiAl0.5Ti0.5 Alloy, Mater. Sci. Eng. A, 2014, 597, p 204–211

    Article  Google Scholar 

  54. S. Mridha, S. Samal, P.Y. Khan, K. Biswas, and Govind, Processing and Consolidation of Nanocrystalline Cu-Zn-Ti-Fe-Cr High-Entropy Alloys Via Mechanical Alloying, Metall. Mater. Trans. A Phys. Metall. Mater. Sci., 2013, 44(10), p 4532–4541

    Article  Google Scholar 

  55. O. Maulik, D. Kumar, S. Kumar, D.M. Fabijanic, and V. Kumar, Structural Evolution of Spark Plasma Sintered AlFeCuCrMgx (X = 0, 0.5, 1, 1.7) High Entropy Alloys, Intermetallics, 2016, 77, p 46–56

    Article  Google Scholar 

  56. R. Sriharitha, B.S. Murty, and R.S. Kottada, Alloying, Thermal Stability and Strengthening in Spark Plasma Sintered AlxCoCrCuFeNi High Entropy Alloys, J. Alloys Compd., 2014, 583, p 419–426

    Article  Google Scholar 

  57. P.F.F. Yu, L.J.J. Zhang, H. Cheng, H. Zhang, M.Z.Z. Ma, Y.C.C. Li, G. Li, P.K.K. Liaw, and R.P.P. Liu, The High-Entropy Alloys with High Hardness and Soft Magnetic Property Prepared by Mechanical Alloying and High-Pressure Sintering, Intermetallics, 2016, 70, p 82–87

    Article  Google Scholar 

  58. J. Wang, Y. Liu, B. Liu, Y. Wang, Y. Cao, T. Li, and R. Zhou, Flow Behavior and Microstructures of Powder Metallurgical CrFeCoNiMo0.2 High Entropy Alloy during High Temperature Deformation, Mater. Sci. Eng. A, 2017, 689, p 233–242

    Article  Google Scholar 

  59. B. Wu, W. Chen, Z. Jiang, Z. Chen, and Z. Fu, Influence of Ti Addition on Microstructure and Mechanical Behavior of a FCC-Based Fe30Ni30Co30Mn10 Alloy, Mater. Sci. Eng. A, 2016, 676, p 492–500

    Article  Google Scholar 

  60. S. Praveen, J. Basu, S. Kashyap, and R.S. Kottada, Exceptional Resistance to Grain Growth in Nanocrystalline CoCrFeNi High Entropy Alloy at High Homologous Temperatures, J. Alloys Compd., 2016, 662, p 361–367

    Article  Google Scholar 

  61. I. Moravcik, J. Cizek, J. Zapletal, Z. Kovacova, J. Vesely, P. Minarik, M. Kitzmantel, E. Neubauer, and I. Dlouhy, Microstructure and Mechanical Properties of Ni1.5Co1.5CrFeTi0.5 High Entropy Alloy Fabricated by Mechanical Alloying and Spark Plasma Sintering, Mater. Des., 2017, 119, p 141–150

    Article  Google Scholar 

  62. S. Praveen, B.S. Murty, and R.S. Kottada, Phase Evolution and Densification Behavior of Nanocrystalline Multicomponent High Entropy Alloys during Spark Plasma Sintering, JOM, 2013, 65(12), p 1797–1804

    Article  Google Scholar 

Download references

Acknowledgments

The authors express their acknowledgment to Mr. Suresh Dua and Mr. Vinod Ingole for their assistance in carrying out XRD and SEM analysis. The authors would like to thank Technical Education Quality Improvement Programme-II (TEQIP-II) for partial financial support of the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manoj Chopkar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Swarnakar, A.K. & Chopkar, M. Phase Evolution and Mechanical Properties of AlCoCrFeNiSix High-Entropy Alloys Synthesized by Mechanical Alloying and Spark Plasma Sintering. J. of Materi Eng and Perform 27, 3304–3314 (2018). https://doi.org/10.1007/s11665-018-3409-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11665-018-3409-4

Keywords

Navigation