Skip to main content

Advertisement

Log in

Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels

  • Review article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Presently, fossil fuels are extensively employed as major sources of energy, and their uses are considered unsustainable due to emissions of obnoxious gases on the burning of fossil fuels, which can lead to severe environmental complications, including human health. To tackle these issues, various processes are developing to waste as a feed to generate eco-friendly fuels. The biological production of fuels is considered to be more beneficial than physicochemical methods due to their environmentally friendly nature, high rate of conversion at ambient physiological conditions, and less energy-intensive. Among various biofuels, hydrogen (H2) is considered as a wonderful due to high calorific value and generate water molecule as end product on the burning. The H2 production from biowaste is demonstrated, and agri-food waste can be potentially used as a feedstock due to their high biodegradability over lignocellulosic-based biomass. Still, the H2 production is uneconomical from biowaste in fuel competing market because of low yields and increased capital and operational expenses. Anaerobic digestion is widely used for waste management and the generation of value-added products. This article is highlighting the valorization of agri-food waste to biofuels in single (H2) and two-stage bioprocesses of H2 and CH4 production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. https://doi.org/10.1007/s10295-007-0300-y

    Article  PubMed  CAS  Google Scholar 

  2. Patel SKS (2010) Studies on biodiversity of hydrogen producers and enhancement of dark fermentative hydrogen production process. Ph.D. Thesis, University of Pune, India. http://hdl.handle.net/10603/3269

  3. Kumar P, Patel SKS, Lee J-K et al (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. https://doi.org/10.1016/j.biotechadv.2013.08.007

    Article  PubMed  CAS  Google Scholar 

  4. Prakash J, Sharma R, Patel SKS et al (2018) Biohydrogen production by co-digestion of domestic wastewater and biodiesel industry effluent. PLoS ONE 13:e0199059. https://doi.org/10.1371/journal.pone.0199059

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  5. Patel SKS, Ray S, Prakash J et al (2019) Co-digestion of biowastes to enhance biological hydrogen process by defined mixed bacterial cultures. Indian J Microbiol 59:154–160. https://doi.org/10.1007/s12088-018-00777-8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kumar P, Sharma R, Ray S et al (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. https://doi.org/10.1016/j.biortech.2015.01.138

    Article  PubMed  CAS  Google Scholar 

  7. Kondaveeti S, Kim IW, Otari S et al (2019) Co-generation of hydrogen and electricity from biodiesel process effluents. Int J Hydrogen Energy 44:27285–27296. https://doi.org/10.1016/j.ijhydene.2019.08.258

    Article  CAS  Google Scholar 

  8. Patel SKS, Gupta RK, Das D et al (2021) Continuous biohydrogen production from poplar biomass hydrolysate by a defined bacterial mixture immobilized on lignocellulosic materials under non-sterile conditions. J Clean Prod 287:125037. https://doi.org/10.1016/j.jclepro.2020.125037

    Article  CAS  Google Scholar 

  9. Patel SKS, Gupta RK, Kondaveeti S et al (2020) Conversion of biogas to methanol by methanotrophs immobilized on chemically modified chitosan. Bioresour Technol 315:123791. https://doi.org/10.1016/j.biortech.2020.123791

    Article  PubMed  CAS  Google Scholar 

  10. Patel SKS, Das D, Kim SC et al (2021) Integrating strategies for sustainable conversion of waste biomass into dark-fermentative hydrogen and value-added products. Renew Sust Energ Rev 150:111491. https://doi.org/10.1016/j.rser.2021.111491

    Article  CAS  Google Scholar 

  11. Kumar V, Patel SKS, Gupta RK et al (2019) Enhanced saccharification and fermentation of rice straw by reducing the concentration of phenolic compounds using an immobilization enzyme cocktail. Biotechnol J 14:1800468. https://doi.org/10.1002/biot.201800468

    Article  CAS  Google Scholar 

  12. Mardina P, Li J, Patel SKS et al (2016) Potential of immobilized whole-cell Methylocella tundrae as biocatalyst for methanol production from methane. J Microbiol Biotechnol 26:1234–1241. https://doi.org/10.4014/jmb.1602.02074

    Article  PubMed  CAS  Google Scholar 

  13. Patel SKS, Mardina P, Kim SY et al (2016) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724. https://doi.org/10.4014/jmb.1601.01013

    Article  PubMed  CAS  Google Scholar 

  14. Patel SKS, Selvaraj C, Mardina P et al (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. https://doi.org/10.1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  15. Patel SKS, Kondaveeti S, Otari SV et al (2018) Repeated batch methanol production from a simulated biogas mixture using immobilized Methylocystis bryophila. Energy 145:477–485. https://doi.org/10.1016/j.energy.2017.12.142

    Article  CAS  Google Scholar 

  16. Kumar A, Park GD, Patel SKS et al (2019) SiO2 microparticles with carbon nanotube-derived mesopores as an efficient support for enzyme immobilization. Chem Eng J 359:1252–1264. https://doi.org/10.1016/j.cej.2018.11.052

    Article  CAS  Google Scholar 

  17. Otari SV, Patel SKS, Kalia VC et al (2020) One-step hydrothermal synthesis of magnetic rice straw for effective lipase immobilization and its application in esterification reaction. Bioresour Technol 302:122887. https://doi.org/10.1016/j.biortech.2020.122887

    Article  PubMed  CAS  Google Scholar 

  18. Kalia VC, Kumar A, Jain SR et al (1992) Biomethanation of plant materials. Bioresour Technol 41:209–212. https://doi.org/10.1016/0960-8524(92)90003-G

    Article  CAS  Google Scholar 

  19. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrogen Energy 37:10590–10603. https://doi.org/10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  20. Patel SKS, Singh M, Kumar P et al (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. https://doi.org/10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  21. Patel SKS, Kumar P, Singh S et al (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. https://doi.org/10.1016/j.biortech.2014.11.029

    Article  PubMed  CAS  Google Scholar 

  22. Patel SKS, Kumar P, Singh M et al (2015) Integrative approach for biohydrogen and polyhydroxyalkanoates production. In: Kalia VC (ed) Microbial factories, waste treatment. Volume 1. Springer, New Delhi, pp. 73–85. https://doi.org/10.1007/978-81-322-2598-0_5

  23. Patel SKS, Jeong J-H, Mehariya S et al (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105. https://doi.org/10.4014/jmb.1608.0805

    Article  PubMed  CAS  Google Scholar 

  24. Patel SKS, Mardina P, Kim D et al (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. https://doi.org/10.1016/j.biortech.2016.06.065

    Article  PubMed  CAS  Google Scholar 

  25. Lee J-K, Patel SKS, Sung BH et al (2020) Biomolecules from municipal and food industry wastes: an overview. Bioresour Technol 298:122346. https://doi.org/10.1016/j.biortech.2029.122346

    Article  PubMed  CAS  Google Scholar 

  26. Singh M, Kumar P, Patel SKS et al (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. https://doi.org/10.1007/s12088-012-0294-7

    Article  PubMed  CAS  Google Scholar 

  27. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. https://doi.org/10.1007/s12088-011-0236-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Kumar P, Singh M, Mehariya S et al (2014) Ecobiotechnological approach for exploiting the abilities of Bacillus to produce co-polymer of polyhydroxyalkanoate. Indian J Microbiol 54:151–157. https://doi.org/10.1007/s12088-014-0457-9

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Kumar P, Ray S, Patel SKS et al (2015) Bioconversion of crude glycerol to polyhydroxyalkanoate by Bacillus thuringiensis under non-limiting nitrogen conditions. Int J Biol Macromol 78:9–16. https://doi.org/10.1016/j.ijbiomac.2015.03.046

    Article  PubMed  CAS  Google Scholar 

  30. Kalia VC, Patel SKS, Shanmugam R et al (2021) Polyhydroxy alkanoates: trends and advances towards biotechnological applications. Bioresour Technol 326:124737. https://doi.org/10.1016/j.biortech.2021.124737

    Article  PubMed  CAS  Google Scholar 

  31. Kondaveeti S, Pagolu R, Patel SKS et al (2019) Bioelectrochemical detoxification of phenolic compounds during enzymatic pre-treatment of rice straw. J Microbiol Biotechnol 29:1760–1768. https://doi.org/10.4014/jmb.1909.09042

    Article  PubMed  CAS  Google Scholar 

  32. Kondaveeti S, Patel SKS, Pagolu R et al (2019) Conversion of simulated biogas to electricity: sequential operation of methanotrophic reactor effluents in microbial fuel cell. Energy 189:116309. https://doi.org/10.1016/j.energy.2019.116309

    Article  CAS  Google Scholar 

  33. Panday D, Patel SKS, Singh R et al (2019) Solvent-tolerant acyltransferase from Bacillus sp. APB-6: purification and characterization. Indian J Microbiol 59:500–507. https://doi.org/10.1007/s12088-019-00836-8

    Article  CAS  Google Scholar 

  34. Kala A, Kamra DN, Agarwal N et al (2020) Insights into metatranscriptome, and CAZymes of buffalo rumen supplemented with blend of essential oils. Indian J Microbiol 60:485–493. https://doi.org/10.1007/s12088-020-00894-3

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  35. Kondaveeti S, Patel SKS, Woo J et al (2020) Characterization of cellobiohydrolases from Schizophyllum commune KMJ820. Indian J Microbiol 60:160–166. https://doi.org/10.1007/s12088-019-00843-9

    Article  PubMed  CAS  Google Scholar 

  36. Devi N, Patel SKS, Kumar P et al (2021) Bioprocess scale-up for acetohydroxamic acid production by hyperactive acyltransferase of immobilized Rhodococcus pyridinivorans. Catal Lett. https://doi.org/10.1007/s10562-021-03696-4

    Article  Google Scholar 

  37. Goderska K (2021) Biosynthesis of lactobionic acid in whey-containing medium by microencapsulated and free bacteria of Pseudomonas taetrolens. Indian J Microbiol 61:315–323. https://doi.org/10.1007/s12088-021-00944-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Muneeswaran G, Patel SKS, Kondaveeti S et al (2021) Biotin and Zn2+ increase xylitol production by Candida tropicalis. Indian J Microbiol 61:331–337. https://doi.org/10.1007/s12088-021-00960-4

    Article  PubMed  CAS  Google Scholar 

  39. Kim TS, Patel SKS, Selvaraj C et al (2016) A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci Rep 6:33438. https://doi.org/10.1038/srep33438

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Ramachandran P, Jagtap SS, Patel SKS et al (2016) Role of the non-conserved amino acid Asparagine 285 in the glycone-binding pocket of Neosartorya fischeri β-glucosidase. RSC Adv 6:48137–48144. https://doi.org/10.1039/c5ra28017f

    Article  CAS  Google Scholar 

  41. Selvaraj C, Krishnasamy G, Jagtap SS et al (2016) Structural insights into the binding mode of D-sorbitol with sorbitol dehydrogenase using QM-polarized ligand docking and molecular dynamics simulations. Biochem Eng J 114:244–256. https://doi.org/10.1016/j.bej.2016.07.008

    Article  CAS  Google Scholar 

  42. Gao H, Li J, Sivakumar D et al (2019) NADH oxidase from Lactobacillus reuteri: A versatile enzyme for oxidized cofactor regeneration. Int J Biol Macromol 123:629–636. https://doi.org/10.1016/j.ijbiomac.2018.11.096

    Article  PubMed  CAS  Google Scholar 

  43. Kim J-S, Patel SKS, Tiwari MK et al (2020) Phe-140 determines the catalytic efficiency of arylacetonitrilase from Alcaligenes faecalis. Int J Mol Sci 21:7859. https://doi.org/10.3390/ijms21217859

    Article  PubMed Central  CAS  Google Scholar 

  44. Pagolu R, Singh R, Shanmugam R et al (2021) Site-directed lysine modification of xylanase for oriented immobilization onto silicon dioxide nanoparticles. Bioresour Technol 331:125063. https://doi.org/10.1016/j.biortech.2021.125063

    Article  PubMed  CAS  Google Scholar 

  45. Kumar P, Koul S, Patel SKS et al (2015) Heterologous expression of quorum sensing inhibitory genes in diverse organisms. In: Kalia VC (ed) Quorum sensing vs quorum quenching: a battle with no end in sight, Springer, pp. 343–356. https://doi.org/10.1007/978-81-322-1982-8_28

  46. Otari SV, Patel SKS, Jeong JH et al (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv 6:86808–86816. https://doi.org/10.1039/c6ra1488k

    Article  CAS  Google Scholar 

  47. Otari SV, Kumar M, Anwar MZ et al (2017) Rapid synthesis and decoration of reduced graphene oxide with gold nanoparticles by thermostable peptides for memory device and photothermal applications. Sci Rep 7:10980. https://doi.org/10.1038/s41598-017-10777-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Otari SV, Pawar SH, Patel SKS et al (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: Characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738. https://doi.org/10.4014/jmb.1610.10019

    Article  PubMed  CAS  Google Scholar 

  49. Kalia VC, Patel SKS, Kang YC et al (2019) Quorum sensing inhibitors as antipathogens: biotechnological applications. Biotechnol Adv 37:68–90. https://doi.org/10.1016/j.biotechadv.2018.11.006

    Article  PubMed  CAS  Google Scholar 

  50. Otari SV, Patel SKS, Kalia VC et al (2019) Antimicrobial activity of biosynthesized silver nanoparticles decorated silica nanoparticles. Indian J Microbiol 59:379–382. https://doi.org/10.1007/s12088-019-00812-2

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Kalia VC, Gong C, Patel SKS et al (2021) Regulation of plant mineral nutrition by signal molecules. Microorganisms 9:774. https://doi.org/10.3390/microorganisms9040774

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Kalia VC, Patel SKS, Cho B-K et al (2021) Emerging applications of bacteria as anti-tumor agents. Sem Cancer Biol. https://doi.org/10.1016/j.semcancer.2021.05.012

    Article  Google Scholar 

  53. Parasuraman P, Devadatha B, Sarma VV et al (2020) Inhibition of microbial quorum sensing mediated virulence factors by Pestalatiopsis sydowiana. J Microbiol Biotechnol 30:571–582. https://doi.org/10.4014/jmb.1907.07030

    Article  PubMed  CAS  Google Scholar 

  54. Patel SKS, Lee J-K, Kalia VC (2020) Deploying biomolecules as anti-COVID-19 agents. Indian J Microbiol 60:263–268. https://doi.org/10.1007/s12088-020-00893-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  55. Prakash O, Nimonkar Y, Desai D (2020) A recent overview of microbes and microbiome preservation. Indian J Microbiol 60:297–309. https://doi.org/10.1007/s12088-020-00880-9

    Article  PubMed  PubMed Central  Google Scholar 

  56. Rishi P, Thakur K, Vij S et al (2020) Diet, gut microbiota and COVID-19. Indian J Microbiol 60:420–429. https://doi.org/10.1007/s12088-020-00908-0

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  57. Kalia VC, Joshi AP (1995) Conversion of waste biomass (pea-shells) into hydrogen and methane through anaerobic digestion. Bioresour Technol 53:165–168. https://doi.org/10.1016/0960-8524(95)00077-R

    Article  CAS  Google Scholar 

  58. Patel SKS, Kumar P, Mehariya S et al (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrogen Energy 39:14663–14668. https://doi.org/10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  59. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. https://doi.org/10.1007/s12088-017-0643-7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Patel SKS, Singh R, Kumar A et al (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927. https://doi.org/10.1016/j.biortech.2017.05.160

    Article  PubMed  CAS  Google Scholar 

  61. Arora K, Kaur P, Kumar P et al (2021) Valorization of wastewater resources into biofuels and value-added products using microalgal system. Front Energy Res 9:646571. https://doi.org/10.3389/fenrg.2021.646571

    Article  Google Scholar 

  62. Patel SKS, Lee J-K, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. https://doi.org/10.1007/s12088-016-0595-3

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  63. Patel SKS, Lee JK, Kalia VC (2018) Beyond the theoretical yields of dark-fermentative biohydrogen. Indian J Microbiol 58:529–530. https://doi.org/10.1007/s12088-018-0759-4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Patel SKS, Lee JK, Kalia VC (2018) Nanoparticles in biological hydrogen production: an overview. Indian J Microbiol 58:8–18. https://doi.org/10.1007/s12088-017-0678-9

    Article  PubMed  CAS  Google Scholar 

  65. Porwal S, Kumar T, Lal S et al (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. https://doi.org/10.1016/j.biortech.2007.11.011

    Article  PubMed  CAS  Google Scholar 

  66. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. https://doi.org/10.1007/s12088-012-0287-6

    Article  PubMed  CAS  Google Scholar 

  67. Patel SKS, Jeon MS, Gupta RK et al (2019) Hierarchical macro-porous particles for efficient whole-cell immobilization: application in bioconversion of greenhouse gases to methanol. ACS Appl Mater Interfaces 11:18968–18977. https://doi.org/10.1021/acsami.9b03420

    Article  PubMed  CAS  Google Scholar 

  68. Patel SKS, Gupta RK, Kumar V et al (2020) Biomethanol production from methane by immobilized cocultures of methanotrophs. Indian J Microbiol 60:318–324. https://doi.org/10.1007/s12088-020-00883-6

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  69. Patel SKS, Kalia VC, Joo JB et al (2020) Biotransformation of methane into methanol by methanotrophs immobilized on coconut coir. Bioresour Technol 297:122433. https://doi.org/10.1016/j.biortech.2019.122433

    Article  PubMed  CAS  Google Scholar 

  70. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. https://doi.org/10.1186/1475-2859-8-38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Purohit HJ (2019) Aligning microbial biodiversity for valorization of biowastes: conception to perception. Indian J Microbiol 59:391–400. https://doi.org/10.1007/s12088-019-00826-w

    Article  PubMed  PubMed Central  Google Scholar 

  72. Imam A, Kanaujia PK, Ray A et al (2021) Removal of petroleum contaminants through bioremediation with integrated concepts of resource recovery: a review. Indian J Microbiol 61:250–261. https://doi.org/10.1007/s12088-021-00928-4

    Article  PubMed  CAS  Google Scholar 

  73. Patel SKS, Gupta RK, Kalia VC et al (2021) Integrating anaerobic digestion of potato peels to methanol production by methanotrophs immobilized on banana leaves. Bioresour Technol 323:124550. https://doi.org/10.1016/j.biortech.2020.124550

    Article  PubMed  CAS  Google Scholar 

  74. Patel SKS, Kumar V, Mardina P et al (2018) Methanol peoduction from simulated biogas mixtures by co-immobilized Methylomonas methanica and Methylocella tundrae. Bioresour Technol 263:25–32. https://doi.org/10.1016/j.biortech.2018.04.096

    Article  PubMed  CAS  Google Scholar 

  75. Patel SKS, Shanmugam R, Kalia VC et al (2020) Methanol production by polymer-encapsulated methanotrophs from simulated biogas in the presence of methane vector. Bioresour Technol 304:123022. https://doi.org/10.1016/j.biortech.2020.123022

    Article  PubMed  CAS  Google Scholar 

  76. Kumari D, Singh R (2018) Pretreatment of lignocellulosic wastes for biofuel production: a critical review. Renew Sustain Energy Rev 90:877–891. https://doi.org/10.1016/j.rser.2018.03.111

    Article  CAS  Google Scholar 

  77. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681. https://doi.org/10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  78. Patel SKS, Choi SH, Kang YC et al (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. https://doi.org/10.1039/C6NR00346J

    Article  PubMed  CAS  Google Scholar 

  79. Patel SKS, Choi SH, Kang YC et al (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. https://doi.org/10.1021/acsami.6b05165

    Article  PubMed  CAS  Google Scholar 

  80. Kumar A, Patel SKS, Madan B et al (2018) Immobilization of xylanase using a protein-inorganic hybrid system. J Microbiol Biotechnol 28:638–644. https://doi.org/10.4014/jmb.1710/.10037

    Article  PubMed  CAS  Google Scholar 

  81. Patel SKS, Gupta RK, Kumar V et al (2019) Influence of metal ions on the immobilization of β-glucosidase through protein-inorganic hybrids. Indian J Microbiol 59:370–374. https://doi.org/10.1007/s12088-019-0796-z

    Article  PubMed  PubMed Central  Google Scholar 

  82. Bhatia SK, Wadhwa P, Bhatia RK, et al. (2019) Strategy for biosynthesis of polyhydroxyalkanoates polymers/copolymers and their application in drug delivery. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 13–34. https://doi.org/10.1007/978-981-13-3759-8_2

  83. Kalia VC, Ray S, Patel SKS, et al. (2019) The dawn of novel biotechnological applications of polyhydroxyalkanoates. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 1–11. https://doi.org/10.1007/978-981-13-3759-8_1

  84. Kalia VC, Ray S, Patel SKS, et al. (2019) Applications of polyhydroxyalkanoates and their metabolites as drug carriers. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 35–48. https://doi.org/10.1007/978-981-13-3759-8_3

  85. Patel SKS, Sandeep K, Singh M, et al. (2019) Biotechnological application of polyhydroxyalkanoates and Their Composites as anti-microbial agents. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 207–225. https://doi.org/10.1007/978-981-13-3759-8_8

  86. Ray S, Patel SKS, Singh M, et al. (2019) Exploiting polyhydroxyalkanoates for tissue engineering. In: Kalia VC (ed) Biotechnological applications of polyhydroxyalkanaotes. Springer, Singapore, pp. 271–282. https://doi.org/10.1007/978-981-13-3759-8_10

  87. Azwar MY, Hussain MA, Abdul-Wahab AK (2014) Development of biohydrogen production by photobiological, fermentation and electrochemical processes: a review. Renew Sustain Energy Rev 31:158–171. https://doi.org/10.1016/j.rser.2013.11.022

    Article  CAS  Google Scholar 

  88. Penfold DW, Forster CF, Macaskie LE (2003) Increased hydrogen production by Escherichia coli strain HD701 in comparison with the wild-type parent strain MC4100. Enzym Microb Technol 33:185–189. https://doi.org/10.1016/S0141-0229(03)00115-7

    Article  CAS  Google Scholar 

  89. Patel SKS, Kalia VC, Choi JH et al (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. https://doi.org/10.4014/jmb.1401.01025

    Article  PubMed  CAS  Google Scholar 

  90. Anwar MZ, Kim DJ, Kumar A et al (2017) SnO2 hollow nanotubes: a novel and efficient support matrix for enzyme immobilization. Sci Rep 7:15333. https://doi.org/10.1038/s41598-017-15550-y

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  91. Patel SKS, Otari SV, Kang YC et al (2017) Protein-inorganic hybrid system for efficient his-tagged enzymes immobilization and its application in L-xylulose production. RSC Adv 7:3488–3494. https://doi.org/10.1039/c6ra24404a

    Article  CAS  Google Scholar 

  92. Kumar A, Kim I-W, Patel SKS et al (2018) Synthesis of protein-inorganic nanohybrids with improved catalytic properties using Co3(PO4)2. Indian J Microbiol 58:100–104. https://doi.org/10.1007/s12088-017-0700-2

    Article  PubMed  CAS  Google Scholar 

  93. Patel SKS, Otari SV, Li J et al (2018) Synthesis of cross-linked protein-metal hybrid nanoflowers and its application in repeated batch decolorization of synthetic dyes. J Hazard Mater 347:442–450. https://doi.org/10.1016/j.jhazmat.2018.01.003

    Article  PubMed  CAS  Google Scholar 

  94. Patel SKS, Anwar MZ, Kumar A et al (2018) Fe2O3 yolk-shell particles-based laccase biosensor for efficient detection of 2,6-dimethoxyphenol. Biochem Eng J 132:1–8. https://doi.org/10.1016/j.bej.2017.12.013

    Article  CAS  Google Scholar 

  95. Otari SV, Patel SKS, Kim S-Y et al (2019) Copper ferrite magnetic nanoparticles for the immobilization of enzyme. Indian J Microbiol 59:105–108. https://doi.org/10.1007/s12088-018-0768-3

    Article  PubMed  CAS  Google Scholar 

  96. Patel SKS, Choi H, Lee J-K (2019) Multi-metal based inorganic–protein hybrid system for enzyme immobilization. ACS Sustainable Chem Eng 7:13633–13638. https://doi.org/10.1021/acssuschemeng.9b02583

    Article  CAS  Google Scholar 

  97. Patel SKS, Gupta RK, Kim S-Y et al (2021) Rhus vernicifera laccase immobilization on magnetic nanoparticles to improve stability and its potential application in bisphenol A degradation. Indian J Microbiol 61:45–54. https://doi.org/10.1007/s12088-020-00912-4

    Article  PubMed  CAS  Google Scholar 

  98. Patel SKS, Kim JH, Kalia VC et al (2019) Antimicrobial activity of amino-derivatized cationic polysaccharides. Indian J Microbiol 59:96–99. https://doi.org/10.1007/s12088-018-0764-7

    Article  PubMed  CAS  Google Scholar 

  99. Otari SV, Shinde VV, Hui G et al (2019) Biomolecule-entrapped SiO2 nanoparticles for ultrafast green synthesis of silver nanoparticle-decorated hybrid nanostructures as effective catalysts. Ceram Int 45:5876–5882. https://doi.org/10.1016/j.ceramint.2018.12.054

    Article  CAS  Google Scholar 

  100. Kee SH, Chiongson JBV, Saludes JP et al (2021) Bioconversion of agro-industry sourced biowaste into biomaterials via microbial factories - A viable domain of circular economy. Environ Pollut 271:116311. https://doi.org/10.1016/j.envpol.2020.116311

    Article  PubMed  CAS  Google Scholar 

  101. Niño-Navarro C, Chairez I, Christen P et al (2020) Enhanced hydrogen production by a sequential dark and photo fermentation process: effects of initial feedstock composition, dilution and microbial population. Renew Energy 147:924–936. https://doi.org/10.1016/j.renene.2019.09.024

    Article  CAS  Google Scholar 

  102. Rambabu K, Bharath G, Banat F et al (2021) Ferric oxide/date seed activated carbon nanocomposites mediated dark fermentation of date fruit wastes for enriched biohydrogen production. Int J Hydrogen Energy 46:16631–16643. https://doi.org/10.1016/j.ijhydene.2020.06.108

    Article  CAS  Google Scholar 

  103. Akinbomi J, Taherzadeh MJ (2015) Evaluation of fermentative hydrogen production from single and mixed fruit wastes. Energies 8:4253–4272. https://doi.org/10.3390/en8054253

    Article  CAS  Google Scholar 

  104. Ozgur E, Mars AE, Peksel B et al (2010) Biohydrogen production from beet molasses by sequential dark and photofermentation. Int J Hydrogen Energy 35:511–517. https://doi.org/10.1016/j.ijhydene.2009.10.094

    Article  CAS  Google Scholar 

  105. Contreras-Dávila CA, Mendez-Acosta HO, Méndez-Acosta L et al (2017) Continuous hydrogen production from enzymatic hydrolysate of Agave tequilana bagasse: effect of the organic loading rate and reactor configuration. Chem Eng J 313:671–679. https://doi.org/10.1016/j.cej.2016.12.084

    Article  CAS  Google Scholar 

  106. Colombo B, Calvo MV, Sciarria TP et al (2019) Biohydrogen and polyhydroxyalkanoates (PHA) as products of a two-steps bioprocess from deproteinized dairy wastes. Waste Manag 95:22–31. https://doi.org/10.1016/j.wasman.2019.05.052

    Article  PubMed  CAS  Google Scholar 

  107. Dinesh GH, Nguyen DD, Ravindran B et al (2020) Simultaneous biohydrogen (H2) and bioplastic (poly-β-hydroxybutyrate-PHB) productions under dark, photo, and subsequent dark and photo fermentation utilizing various wastes. Int J Hydrogen Energy 45:5840–5853. https://doi.org/10.1016/j.ijhydene.2019.09.036

    Article  CAS  Google Scholar 

  108. Ahmad Q-A, Manzoor M, Chaudhary A et al (2021) Bench-scale fermentation for second generation ethanol and hydrogen production by Clostridium thermocellum DSMZ 1313 from sugarcane bagasse. Environ Prog Sustainable Energy 40:e13516. https://doi.org/10.1002/ep.13516

    Article  CAS  Google Scholar 

  109. Singhvi M, Maharjan A, Thapa A et al (2021) Nanoparticle-associated single step hydrogen fermentation for the conversion of starch potato waste biomass by thermophilic Parageobacillus thermoglucosidasius. Bioresour Technol 337:125490. https://doi.org/10.1016/j.biortech.2021.125490

    Article  PubMed  CAS  Google Scholar 

  110. Ren H-Y, Liu B-F, Kong F et al (2015) Sequential generation of hydrogen and lipids from starch by combination of dark fermentation and microalgal cultivation. RSC Adv 5:76779–76782. https://doi.org/10.1039/C5RA15023J

    Article  CAS  Google Scholar 

  111. Alavi-Borazjani SA, da Cruz Tarelho LA, Capela MI (2021) Parametric optimization of the dark fermentation process for enhanced biohydrogen production from the organic fraction of municipal solid waste using Taguchi method. Int J Hydrogen Energy 46:21372–21382. https://doi.org/10.1016/j.ijhydene.2021.04.017

    Article  CAS  Google Scholar 

  112. Zong W, Yu R, Zhang P et al (2009) Efficient hydrogen gas production from cassava and food waste by a two-step process of dark fermentation and photo-fermentation. Biomass Bioenergy 33:1458–1463. https://doi.org/10.1016/j.biombioe.2009.06.008

    Article  CAS  Google Scholar 

  113. Pason P, Tachaapaikoon C, Panichnumsin P et al (2020) One - step biohydrogen production from cassava pulp using novel enrichment of anaerobic thermophilic bacteria community. Biocatal Agri Biotechnol 27:101658. https://doi.org/10.1016/j.bcab.2020.101658

    Article  Google Scholar 

  114. Giordano A, Cantù C, Spagni A (2011) Monitoring the biochemical hydrogen and methane potential of the two-stage dark fermentative process. Bioresour Technol 102:4474–4479. https://doi.org/10.1016/j.biortech.2010.12.106

    Article  PubMed  CAS  Google Scholar 

  115. Dong L, Zhenhong Y, Yongming S et al (2011) Anaerobic fermentative co-production of hydrogen and methane from an organic fraction of municipal solid waste. Energy Sources A 33:575–585. https://doi.org/10.1080/15567030903117653

    Article  CAS  Google Scholar 

  116. Cota-Navarro CB, Carillo-Reyes J, Davila-Vazquez G et al (2011) Continuous hydrogen and methane production in a two-stage cheese whey fermentation system. Water Sci Technol 64:367–374. https://doi.org/10.2166/wst.2011.631

    Article  PubMed  CAS  Google Scholar 

  117. Nathao C, Sirisukpoka U, Pisutpaisal N (2014) Production of hydrogen and methane from banana peel by two phase anaerobic fermentation. Energy Procedia 50:702–710. https://doi.org/10.1016/j.egypro.2014.06.086

    Article  CAS  Google Scholar 

  118. Kumari S, Das D (2015) Improvement of gaseous energy recovery from sugarcane by dark fermentation followed by biomethanation process. Bioresour Technol 192:354–363. https://doi.org/10.1016/j.biortech.2015.07.038

    Article  CAS  Google Scholar 

  119. Jiang H, Qin Y, Gadow SI et al (2018) Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Bioresour Technol 247:769–775. https://doi.org/10.1016/j.biortech.2017.09.102

    Article  PubMed  CAS  Google Scholar 

  120. Salem AH, Mietzel T, Brunstermann R et al (2018) Two-stage anaerobic fermentation process for bio-hydrogen and biomethane production from pre-treated organic wastes. Bioresour Technol 265:399–406. https://doi.org/10.1016/j.biortech.2018.06.017

    Article  PubMed  CAS  Google Scholar 

  121. Yeshanew MM, Paillet F, Barrau C et al (2018) Co-production of hydrogen and methane from the organic fraction of municipal solid waste in a pilot scale dark fermenter and methanogenic biofilm reactor. Front Environ Sci 6:41. https://doi.org/10.3389/fenvs.2018.00041

    Article  Google Scholar 

  122. Bolzonella D, Mıcoluccı F, Battısta F et al (2020) Producing biohythane from urban organic wastes. Waste Biomass Volor 11:2367–2374. https://doi.org/10.1007/s12649-018-00569-7

    Article  CAS  Google Scholar 

  123. Kumar CP, Rena X, Meenakshi A et al (2019) Bio-hythane production from organic fraction of municipal solid waste in single and two stage anaerobic digestion processes. Bioresour Technol 294:122220. https://doi.org/10.1016/j.biortech.2019.122220

    Article  PubMed  CAS  Google Scholar 

  124. Sun C, Xia A, Fu Q et al (2019) Effects of pretreatment and biological acidification on fermentative hydrogen and methane co-production. Energy Convers Manag 185:431–441. https://doi.org/10.1016/j.enconman.2019.01.118

    Article  CAS  Google Scholar 

  125. Wongthanate J, Mongkarothai K (2018) Enhanced thermophilic bioenergy production from food waste by a two-stage fermentation process. Int J Recycl Org Waste Agricul 7:109–116. https://doi.org/10.1007/s40093-018-0196-8

    Article  Google Scholar 

  126. Algapani DE, Qiao W, Ricci M et al (2019) Bio-hydrogen and bio-methane production from food waste in a two-stage anaerobic digestion process with digestate recirculation. Renew Energy 130:1108–1115. https://doi.org/10.1016/j.renene.2018.08.079

    Article  CAS  Google Scholar 

  127. Yuan T, Bian S, Ko JH et al (2019) Enhancement of hydrogen production using untreated inoculum in two-stage food waste digestion. Bioresour Technol 282:189–196. https://doi.org/10.1016/j.biortech.2019.03.020

    Article  PubMed  CAS  Google Scholar 

  128. Pagliaccia P, Gallipoli A, Gianico A et al (2016) Single stage anaerobic bioconversion of food waste in mono and co-digestion with olive husks: impact of thermal pretreatment on hydrogen and methane production. Int J Hydrogen Energy 41:905–915. https://doi.org/10.1016/j.ijhydene.2015.10.061

    Article  CAS  Google Scholar 

  129. Abreu AA, Tavares F, Alves MM et al (2019) Garden and food waste co-fermentation for biohydrogen and biomethane production in a two-step hyperthermophilic-mesophilic process. Bioresour Technol 278:180–186. https://doi.org/10.1016/j.biortech.2019.01.085

    Article  PubMed  CAS  Google Scholar 

  130. Liu X, Li R, Ji M (2019) Effects of two-stage operation on stability and efficiency in co-digestion of food waste and waste activated sludge. Energies 12:2748. https://doi.org/10.3390/en12142748

    Article  CAS  Google Scholar 

  131. Farhat A, Miladi B, Hamdi M et al (2018) Fermentative hydrogen and methane co-production from anaerobic co-digestion of organic wastes at high loading rate coupling continuously and sequencing batch digesters. Environ Sci Pollut Res 25:27945–27958. https://doi.org/10.1007/s11356-018-2796-2

    Article  CAS  Google Scholar 

  132. Kalia VC, Lal S, Ghai R et al (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. https://doi.org/10.1016/S0167-7799(03)00028-3

    Article  PubMed  CAS  Google Scholar 

  133. Adesra A, Srivastava VK, Varjani S (2021) Valorization of dairy wastes: Integrative approaches for value added products. Indian J Microbiol 61:270–278. https://doi.org/10.1007/s12088-021-00943-5

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (32070107), and the Collaborative Grant-in-Aid of the HBUT National "111" Center for Cellular Regulation and Molecular Pharmaceutics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Archana Singh.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gong, C., Singh, A., Singh, P. et al. Anaerobic Digestion of Agri-Food Wastes for Generating Biofuels. Indian J Microbiol 61, 427–440 (2021). https://doi.org/10.1007/s12088-021-00977-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-021-00977-9

Keywords

Navigation