Skip to main content

Advertisement

Log in

Nanoparticles in Biological Hydrogen Production: An Overview

  • Review Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Biological hydrogen (H2) production enhancement through the use of nanoparticles (NPs) supplement in the media is being recognized as a promising approach. The NPs, including those of metal and metal oxides have shown a significant improvement in the BHP. A number of organisms as pure or mixed cultures can produce H2 in presence of NPs from pure sugars and biowaste as a feed. However, their H2 production efficiencies have been found to vary significantly with the type of NPs and their concentration. In this review article, the potential role of NPs in the enhancement of H2 production has been assessed in dark- and photo-fermentative organisms using sugars and biowaste materials as feed. Further, the integrative approaches for commercial applications of NPs in BHP have been discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Levin DB, Chahine R (2010) Challenges for renewable hydrogen production from biomass. Int J Hydrog Energy 35:4962–4969. doi:10.1016/j.ijhydene.2009.08.067

    Article  CAS  Google Scholar 

  2. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419. doi:10.1007/s10295-007-0300-y

    Article  CAS  PubMed  Google Scholar 

  3. Patel SKS, Kalia VC (2013) Integrative biological hydrogen production: an overview. Indian J Microbiol 53:3–10. doi:10.1007/s12088-012-0287-6

    Article  CAS  PubMed  Google Scholar 

  4. Rodionova MV, Poudyal RS, Tiwari I, Voloshin RA, Zharmukhamedov SK, Nam HG, Zayadan BK, Bruce BD, Hou HJM, Allakhverdiev SI (2017) Biofuel production: challenges and opportunities. Int J Hydrog Energy 42:8450–8461. doi:10.1016/j.ijhydene.2016.11.125

    Article  CAS  Google Scholar 

  5. Joshi G, Pandey JK, Rana S, Rawat DS (2017) Challenges and opportunities for the application of biofuel. Renew Sustain Energy Rev 79:850–866. doi:10.1016/j.rser.2017.05.185

    Article  Google Scholar 

  6. Kalia VC, Prakash J, Koul S (2016) Biorefinery for glycerol rich biodiesel industry waste. Indian J Microbiol 56:113–125. doi:10.1007/s12088-016-0583-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Kumar P, Pant DC, Mehariya S, Sharma R, Kansal A, Kalia VC (2014) Ecobiotechnological strategy to enhance efficiency of bioconversion of wastes into hydrogen and methane. Indian J Microbiol 54:262–267. doi:10.1007/s12088-014-0467-7

    Article  PubMed  PubMed Central  Google Scholar 

  8. Kumar P, Sharma R, Ray S, Mehariya S, Patel SKS, Lee J-K, Kalia VC (2015) Dark fermentative bioconversion of glycerol to hydrogen by Bacillus thuringiensis. Bioresour Technol 182:383–388. doi:10.1016/j.biortech.2015.01.138

    Article  CAS  PubMed  Google Scholar 

  9. Patel SKS, Kumar P, Kalia VC (2012) Enhancing biological hydrogen production through complementary microbial metabolisms. Int J Hydrog Energy 37:10590–10603. doi:10.1016/j.ijhydene.2012.04.045

    Article  CAS  Google Scholar 

  10. Patel SKS, Mardina P, Kim S-Y, Lee J-K, Kim I-W (2016) Biological methanol production by a type II methanotroph Methylocystis bryophila. J Microbiol Biotechnol 26:717–724. doi:10.4014/jmb.1601.01013

    Article  CAS  PubMed  Google Scholar 

  11. Patel SKS, Jeong J-H, Mehariya S, Otari SV, Madan B, Haw JR, Lee J-K, Zhang L, Kim I-W (2016) Production of methanol from methane by encapsulated Methylosinus sporium. J Microbiol Biotechnol 26:2098–2105. doi:10.4014/jmb.1608.08053

    Article  PubMed  Google Scholar 

  12. Sinha P, Roy S, Das D (2016) Genomic and proteomic approaches for dark fermentative biohydrogen production. Renew Sustain Energy Rev 56:1308–1321. doi:10.1016/j.rser.2015.12.035

    Article  CAS  Google Scholar 

  13. Roy S, Das D (2016) Biohythane production from organic wastes: present state of art. Environ Sci Pollut Res Int 23:9391–9410. doi:10.1007/s11356-015-5469-4

    Article  CAS  PubMed  Google Scholar 

  14. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156. doi:10.1016/S0167-7799(03)00028-3

    Article  CAS  PubMed  Google Scholar 

  15. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451. doi:10.1016/j.biortech.2007.11.011

    Article  CAS  PubMed  Google Scholar 

  16. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrog Energy 34:799–811. doi:10.1016/j.ijhydene.2008.11.015

    Article  CAS  Google Scholar 

  17. Goyal Y, Kumar M, Gayen K (2013) Metabolic engineering for enhanced hydrogen production: a review. Can J Microbiol 59:59–78. doi:10.1139/cjm-2012-0494

    Article  CAS  PubMed  Google Scholar 

  18. Hallenbeck PC, Ghosh D (2012) Improvements in fermentative biological hydrogen production through metabolic engineering. J Environ Manag 95:S360–S364. doi:10.1016/j.jenvman.2010.07.021

    Article  CAS  Google Scholar 

  19. Elreedy A, Ibrahim E, Hassan N, El-Dissouky A, Fujji M, Yoshimura C, Tawfik A (2017) Nickel-graphene nanocomposite as a novel supplement for enhancement of biohydrogen production from industrial wastewater containing mono-ethylene glycol. Energy Convers Manag 140:133–144. doi:10.1016/j.enconman.2017.02.080

    Article  CAS  Google Scholar 

  20. Engliman NS, Abdul PM, Wu S-Y, Jahim JM (2017) Influence of iron (II) oxide nanoparticle on biohydrogen production in thermophilic mixed fermentation. Int J Hydrog Energy. doi:10.1016/j.ijhydene.2017.05.224

    Google Scholar 

  21. Mostafa A, El-Dissouky A, Fawzy A, Farghaly A, Peu P, Dabert P, Roux SL, Tawfix A (2016) Magnetite/graphene oxide nano-composite for enhancement of hydrogen production from gelatinaceous wastewater. Bioresour Technol 216:520–528. doi:10.1016/j.biortech.2016.05.072

    Article  CAS  PubMed  Google Scholar 

  22. Patel SKS, Choi S-H, Kang Y-C, Lee J-K (2016) Large-scale aerosol-assisted synthesis of biofriendly Fe2O3 yolk-shell particles: a promising support for enzyme immobilization. Nanoscale 8:6728–6738. doi:10.1039/c6nr00346j

    Article  CAS  PubMed  Google Scholar 

  23. Patel SKS, Choi SH, Kang YC, Lee J-K (2017) Eco-friendly composite of Fe3O4-reduced graphene oxide particles for efficient enzyme immobilization. ACS Appl Mater Interfaces 9:2213–2222. doi:10.1021/acsami.6b05165

    Article  CAS  PubMed  Google Scholar 

  24. Verma ML, Puri M, Barrow CJ (2016) Recent trends in nanomaterials immobilised enzymes for biofuel production. Crit Rev Biotechnol 36:108–119. doi:10.3109/07388551.2014.928811

    Article  CAS  PubMed  Google Scholar 

  25. Kim DH, Kim MS (2011) Hydrogenases for biological hydrogen production. Bioresour Technol 102:8423–8431. doi:10.1016/j.biortech.2011.02.113

    Article  CAS  PubMed  Google Scholar 

  26. Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Phytosynthesized iron oxide nanoparticles and ferrous iron on fermentative hydrogen production using Enterobacter cloacae: evaluation and comparison of the effects. Int J Hydrog Energy 39:11920–11929. doi:10.1016/j.ijhydene.2014.06.027

    Article  CAS  Google Scholar 

  27. Hsieh P-H, Lai Y-C, Chen K-Y, Hung C-H (2016) Explore the possible effect of TiO2 and magnetic hematite nanoparticle addition on biohydrogen production by Clostridium pasteurianum based on gene expression measurements. Int J Hydrog Energy 41:21685–21691. doi:10.1016/j.ijhydene.2016.06.197

    Article  CAS  Google Scholar 

  28. Otari SV, Pawar SH, Patel SKS, Singh RK, Kim S-Y, Lee J-H, Zhang L, Lee J-K (2017) Canna edulis leaf extract-mediated preparation of stabilized silver nanoparticles: characterization, antimicrobial activity, and toxicity studies. J Microbiol Biotechnol 27:731–738. doi:10.4014/jmb.1610.10019

    Article  CAS  PubMed  Google Scholar 

  29. Mohanraj S, Anbalagan K, Kodhaiyolii S, Pugalenthi V (2014) Comparative evaluation of fermentative hydrogen production using Enterobacter cloacae and mixed culture: effect of Pd (II) ion and phytogenic palladium nanoparticles. J Biotechnol 192:87–95. doi:10.1016/j.jbiotec.2014.10.012

    Article  CAS  PubMed  Google Scholar 

  30. Mohanraj S, Anbalagan K, Rajaguru P, Pugalenthi V (2016) Effects of phytogenic copper nanoparticles on fermentative hydrogen production by Enterobacter cloacae and Clostridium acetobutylicum. Int J Hydrog Energy 41:10639–10645. doi:10.1016/j.ijhydene.2016.04.197

    Article  CAS  Google Scholar 

  31. Levin DB, Pitt L, Love M (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrog Energy 29:173–185. doi:10.1016/S0360-3199(03)00094-6

    Article  CAS  Google Scholar 

  32. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrog Energy 35:10674–10681. doi:10.1016/j.ijhydene.2010.03.025

    Article  CAS  Google Scholar 

  33. Patel SKS, Singh M, Kalia VC (2011) Hydrogen and polyhydroxybutyrate producing abilities of Bacillus spp. from glucose in two stage system. Indian J Microbiol 51:418–423. doi:10.1007/s12088-011-0236-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Patel SKS, Singh M, Kumar P, Purohit HJ, Kalia VC (2012) Exploitation of defined bacterial cultures for production of hydrogen and polyhydroxybutyrate from pea-shells. Biomass Bioenergy 36:218–225. doi:10.1016/j.biombioe.2011.10.027

    Article  CAS  Google Scholar 

  35. Patel SKS, Kumar P, Mehariya S, Purohit HJ, Lee JK, Kalia VC (2014) Enhancement in hydrogen production by co-cultures of Bacillus and Enterobacter. Int J Hydrog Energy 39:14663–14668. doi:10.1016/j.ijhydene.2014.07.084

    Article  CAS  Google Scholar 

  36. Singh M, Kumar P, Patel SKS, Kalia VC (2013) Production of polyhydroxyalkanoate co-polymer by Bacillus thuringiensis. Indian J Microbiol 53:77–83. doi:10.1007/s12088-012-0294-7

    Article  CAS  PubMed  Google Scholar 

  37. Myung S, Rollin J, You C, Sun F, Chandrayan S, Adams MWW, Zhang Y-HP (2014) In vitro metabolic engineering of hydrogen production at theoretical yield from sucrose. Metab Eng 24:70–77. doi:10.1016/j.ymben.2014.05.006

    Article  CAS  PubMed  Google Scholar 

  38. Kim D-H, Kim M-S (2013) Development of a novel three-stage fermentation system converting food waste to hydrogen and methane. Bioresour Technol 127:267–274. doi:10.1016/j.biortech.2012.09.088

    Article  CAS  PubMed  Google Scholar 

  39. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach for hydrogen and polyhydroxybutyrate production. In: Kalia VC (ed) Microbial factories: biofuels, waste treatment, vol 1, pp 73–85. doi:10.1007/978-81-322-2598-0_5

  40. Patel SKS, Lee JK, Kalia VC (2016) Integrative approach for producing hydrogen and polyhydroxyalkanoate from mixed wastes of biological origin. Indian J Microbiol 56:293–300. doi:10.1007/s12088-016-0595-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Patel SKS, Lee JK, Kalia VC (2017) Dark-fermentative biological hydrogen production from mixed biowastes using defined mixed cultures. Indian J Microbiol 57:171–176. doi:10.1007/s12088-017-0643-7

    Article  CAS  PubMed  Google Scholar 

  42. Kim TS, Patel SKS, Selvaraj C, Jung W-S, Pan C-H, Kang YC, Lee J-K (2016) A highly efficient sorbitol dehydrogenase from Gluconobacter oxydans G624 and improvement of its stability through immobilization. Sci Rep 6:33438. doi:10.1038/sre33438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Otari SV, Patel SKS, Jeong JH, Lee JH, Lee J-K (2016) A green chemistry approach for synthesizing thermostable antimicrobial peptide-coated gold nanoparticles immobilized in an alginate biohydrogel. RSC Adv 6:86808–86816. doi:10.1039/c6ra1488k

    Article  CAS  Google Scholar 

  44. Beckers L, Hiligsmann S, Lambert SD, Heinrichs B, Thonart P (2013) Improving effect of metal and oxide nanoparticles encapsulated in porous silica on fermentative biohydrogen production by Clostridium butyricum. Bioresour Technol 133:109–117. doi:10.1016/j.biortech.2012.12.168

    Article  CAS  PubMed  Google Scholar 

  45. Gadhe A, Sonawane SS, Varma MN (2015) Enhancement effect of hematite and nickel nanoparticles on biohydrogen production from dairy wastewater. Int J Hydrog Energy 40:4502–4511. doi:10.1016/j.ijhydene.2015.02.046

    Article  CAS  Google Scholar 

  46. Gadhe A, Sonawane SS, Varma MN (2015) Influence of nickel and hematite nanoparticle powder on the production of biohydrogen from complex distillery wastewater in batch fermentation. Int J Hydrog Energy 40:10734–10743. doi:10.1016/j.ijhydene.2015.05.198

    Article  CAS  Google Scholar 

  47. Liu Z, Lv F, Zheng H, Zhang C, Wei F, Xing X-H (2012) Enhanced hydrogen production in a UASB reactor by retaining microbial consortium onto carbon nanotubes (CNTs). Int J Hydrog Energy 37:10619–10626. doi:10.1016/j.ijhydene.2012.04.057

    Article  CAS  Google Scholar 

  48. Venkata Mohan S, Mohanakrishna G, Reddy SS, Raju BD, Rao RKS, Sarma PN (2008) Self-immobilization of acidogenic mixed consortia on mesoporous material (SBA-15) and activated carbon to enhance fermentative hydrogen production. Int J Hydrog Energy 33:6133–6142. doi:10.1016/j.ijhydene.2008.07.096

    Article  Google Scholar 

  49. Zhang Y, Shen J (2007) Enhancement effect of gold nanoparticles on biohydrogen production from artificial wastewater. Int J Hydrog Energy 32:17–23. doi:10.1016/j.ijhydene.2006.06.004

    Article  Google Scholar 

  50. Zhao Y, Chen Y (2011) Nano-TiO2 enhanced photofermentative hydrogen produced from the dark fermentation liquid of waste activated sludge. Environ Sci Technol 45:8589–8595. doi:10.1021/es2016186

    Article  CAS  PubMed  Google Scholar 

  51. Zhao W, Zhang Y, Dua B, Wei D, Wei Q, Zhao Y (2013) Enhancement effect of silver nanoparticles on fermentative biohydrogen production using mixed bacteria. Bioresour Technol 142:240–245. doi:10.1016/j.biortech.2013.05.042

    Article  CAS  PubMed  Google Scholar 

  52. Khan MM, Lee J, Cho MH (2013) Electrochemically active biofilm mediated bio-hydrogen production catalyzed by positively charged gold nanoparticles. Int J Hydrog Energy 38:5243–5250. doi:10.1016/j.ijhydene.2013.02.080

    Article  CAS  Google Scholar 

  53. Ahamed M, Alsalhi MS, Siddiqui MK (2010) Silver nanoparticle applications and human health. Clin Chim Acta 411:1841–1848. doi:10.1016/j.cca.2010.08.016

    Article  CAS  PubMed  Google Scholar 

  54. Deplanche K, Caldelari I, Mikheenko IP, Sargent F, Macaskie LE (2010) Involvement of hydrogenases in the formation of highly catalytic Pd(0) nanoparticles by bioreduction of Pd(II) using Escherichia coli mutant strains. Microbiology 156:2630–2640. doi:10.1099/mic.0.036681-0

    Article  CAS  PubMed  Google Scholar 

  55. Dolly S, Pandey A, Pandey BK, Gopal R (2015) Process parameter optimization and enhancement of photo-biohydrogen production by mixed culture of Rhodobacter sphaeroides NMBL-02 and Escherichia coli NMBL-04 using Fe-nanoparticle. Int J Hydrog Energy 40:16010–16020. doi:10.1016/j.ijhydene.2015.09.089

    Article  CAS  Google Scholar 

  56. Malik SN, Pugalenthi V, Vaidya AN, Ghosh PC, Mudliar SN (2014) Kinetics of nano-catalysed dark fermentative hydrogen production from distillery wastewater. Energy Procedia 54:417–430. doi:10.1016/j.egypro.2014.07.284

    Article  CAS  Google Scholar 

  57. Mohanraj S, Kodhaiyolii S, Rengasamy M, Pugalenthi V (2014) Green synthesis of iron oxide nanoparticles effect on fermentative hydrogen production by Clostridium acetobutylicum. Appl Biochem Biotechnol 173:318–331. doi:10.1007/s12010-014-0843-0

    Article  CAS  PubMed  Google Scholar 

  58. Nath D, Manhar AK, Gupta K, Saikia D, Das SK, Mandal M (2015) Phytosynthesized iron nanoparticles: effects on fermentative hydrogen production by Enterobacter cloacae DH-89. Bull Mater Sci 38:1533–1538. doi:10.1007/s12034-015-0974-0

    Article  CAS  Google Scholar 

  59. Taherdanak M, Zilouei H, Karimi K (2015) Investigating the effects of iron and nickel nanoparticles on dark hydrogen fermentation from starch using central composite design. Int J Hydrog Energy 40:12956–12963. doi:10.1016/j.ijhydene.2015.08.004

    Article  CAS  Google Scholar 

  60. Zada B, Mahmood T, Malik SA (2013) Effect of iron nanoparticles on hyacinths fermentation. Int J Sci 2:106–121

    Google Scholar 

  61. Zhang L, Zhang L, Li D (2015) Enhanced dark fermentative hydrogen production by zero-valent iron activated carbon microelectrolysis. Int J Hydrog Energy 40:12201–12208. doi:10.1016/j.ijhydene.2015.07.106

    Article  CAS  Google Scholar 

  62. Taherdanak M, Zilouei H, Karimi K (2016) The effects of Feo and Nio nanoparticles versus Fe2+ and Ni2+ ions on dark hydrogen fermentation. Int J Hydrog Energy 41:167–173. doi:10.1016/j.ijhydene.2015.11.110

    Article  CAS  Google Scholar 

  63. Lin R, Cheng J, Ding L, Song W, Liu M, Zhou J, Cen K (2016) Enhanced dark hydrogen fermentation by addition of ferric oxide nanoparticles using Enterobacter aerogenes. Bioresour Technol 207:213–219. doi:10.1016/j.biortech.2016.02.009

    Article  CAS  PubMed  Google Scholar 

  64. Han H, Cui M, Wei L, Yang H, Shen J (2011) Enhancement effect of hematite nanoparticles on fermentative hydrogen production. Bioresour Technol 102:7903–7909. doi:10.1016/j.biortech.2011.05.089

    Article  CAS  PubMed  Google Scholar 

  65. Nasr M, Tawfik A, Ookawara S, Suzuki M, Kumari S, Bux F (2015) Continuous biohydrogen production from starch wastewater via sequential dark-photo fermentation with emphasize on maghemite nanoparticles. J Ind Eng Chem 21:500–506. doi:10.1016/j.jiec.2014.03.011

    Article  CAS  Google Scholar 

  66. Zhao W, Zhao J, Chen G, Feng R, Yang J, Zhao Y, Wei Q, Du B, Zhang Y (2011) Anaerobic biohydrogen production by the mixed culture with mesoporous Fe3O4 nanoparticles activation. Adv Mater Res 306–307:1528–1531. doi:10.4028/www.scientific.net/amr.306-307.1528

    Google Scholar 

  67. Reddy K, Nasr M, Kumari S, Kumar S, Gupta SK, Enitan AM, Bux F (2017) Biohydrogen production from sugarcane bagasse hydrolysate: effects of pH, S/X, Fe2+, and magnetite nanoparticles. Environ Sci Pollut Res Int 24:8790–8804. doi:10.1007/s11356-017-8560-1

    Article  CAS  PubMed  Google Scholar 

  68. Mullai P, Yogeswari MK, Sridevi K (2013) Optimisation and enhancement of biohydrogen production using nickel nanoparticles—a novel approach. Bioresour Technol 141:212–219. doi:10.1016/j.biortech.2013.03.082

    Article  CAS  PubMed  Google Scholar 

  69. Patel SKS, Kalia VC, Choi JH, Haw JR, Kim IW, Lee JK (2014) Immobilization of laccase on SiO2 nanocarriers improves its stability and reusability. J Microbiol Biotechnol 24:639–647. doi:10.4014/jmb.1401.01025

    Article  CAS  PubMed  Google Scholar 

  70. Giannelli L, Torzillo G (2012) Hydrogen production with the microalga Chlamydomonas reinhardtii grown in a compact tubular photobioreactor immersed in a scattering light nanoparticle suspension. Int J Hydrog Energy 37:16951–16961. doi:10.1016/j.ijhydene.2012.08.103

    Article  CAS  Google Scholar 

  71. Pandey A, Gupta K, Pandey A (2015) Effect of nanosized TiO2 on photofermentation by Rhodobacter sphaeroides NMBL-02. Biomass Bioenergy 72:273–279. doi:10.1016/j.biombioe.2014.10.021

    Article  CAS  Google Scholar 

  72. Jafari O, Zilouei H (2016) Enhanced biohydrogen and subsequent biomethane production from sugarcane bagasse using nano-titanium dioxide pretreatment. Bioresour Technol 214:670–678. doi:10.1016/j.biortech.2016.05.007

    Article  CAS  PubMed  Google Scholar 

  73. Stojkovic D, Torzillo G, Faraloni C, Valant M (2015) Hydrogen production by sulfur-deprived TiO2-encapsulated Chlamydomonas reinhardii cells. Int J Hydrog Energy 40:3201–3206. doi:10.1016/j.ijhydene.2014.12.115

    Article  CAS  Google Scholar 

  74. Wimonsong P, Nitisoravut R (2014) Biohydrogen enhancement using highly porous activated carbon. Energy Fuels 28:4554–4559. doi:10.1021/ef500530v

    Article  CAS  Google Scholar 

  75. Wimonsong P, Nitisoravut R (2015) Comparison of different catalyst for fermentative hydrogen production. J Clean Energy Technol 3:128–131. doi:10.7763/jocet.2015.v3.181

    Article  CAS  Google Scholar 

  76. Seelert T, Ghosh D, Yargeau V (2015) Improving biohydrogen production using Clostridium beijerinckii immobilized with magnetite nanoparticles. Appl Microbiol Biotechnol 99:4107–4116. doi:10.1007/s00253-015-6484-6

    Article  CAS  PubMed  Google Scholar 

  77. Kumar P, Patel SKS, Lee JK, Kalia VC (2013) Extending the limits of Bacillus for novel biotechnological applications. Biotechnol Adv 31:1543–1561. doi:10.1016/j.biotechadv.2013.08.007

    Article  CAS  PubMed  Google Scholar 

  78. Ray S, Kalia VC (2017) Co-metabolism of substrates by Bacillus thuringiensis regulates polyhydroxyalkanoates co-polymer composition. Bioresour Technol 224:743–747. doi:10.1016/j.biortech.2016.11.089

    Article  CAS  PubMed  Google Scholar 

  79. Patel SKS, Kumar P, Singh S, Lee JK, Kalia VC (2015) Integrative approach to produce hydrogen and polyhydroxybutyrate from biowaste using defined bacterial cultures. Bioresour Technol 176:136–141. doi:10.1016/j.biortech.2014.11.029

    Article  CAS  PubMed  Google Scholar 

  80. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38. doi:10.1186/1475-2859-8-38

    Article  PubMed  PubMed Central  Google Scholar 

  81. Patel SKS, Mardina P, Kim D, Kim S-Y, Kalia VC, Kim I-W, Lee J-K (2016) Improvement in methanol production by regulating the composition of synthetic gas mixture and raw biogas. Bioresour Technol 218:202–208. doi:10.1016/j.biortech.2016.06.065

    Article  CAS  PubMed  Google Scholar 

  82. Patel SKS, Selvaraj C, Mardina P, Jeong J-H, Kalia VC, Kang Y-C, Lee J-K (2016) Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization. Appl Energy 171:383–391. doi:10.1016/j.apenergy.2016.03.022

    Article  CAS  Google Scholar 

  83. Patel SKS, Singh R, Kumar A, Jeong J-H, Jeong S-H, Kalia VC, Kim I-W, Lee J-K (2017) Biological methanol production by immobilized Methylocella tundrae using simulated biohythane as a feed. Bioresour Technol 241:922–927. doi:10.1016/j.biortech.2017.05.160

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Director of CSIR–Institute of Genomics and Integrative Biology, Delhi, India, CSIR Project WUM (ESC0108) for providing the necessary funds, facilities and moral support. This research was also supported by KU Research Professor program of Konkuk University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sanjay K. S. Patel.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Patel, S.K.S., Lee, JK. & Kalia, V.C. Nanoparticles in Biological Hydrogen Production: An Overview. Indian J Microbiol 58, 8–18 (2018). https://doi.org/10.1007/s12088-017-0678-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-017-0678-9

Keywords

Navigation