Skip to main content
Log in

Hydrogen and Polyhydroxybutyrate Producing Abilities of Bacillus spp. From Glucose in Two Stage System

  • Original Article
  • Published:
Indian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Metabolic activities of four Bacillus strains to transform glucose into hydrogen (H2) and polyhydroxybutyrate (PHB) in two stages were investigated in this study. Under batch culture conditions, Bacillus thuringiensis EGU45 and Bacillus cereus EGU44 evolved 1.67–1.92 mol H2/mol glucose, respectively during the initial 3 days of incubation at 37°C. In the next 2 days, the residual glucose solutions along with B. thuringiensis EGU45 shaken at 200 rpm was found to produce PHB yield of 11.3% of dry cell mass. This is the first report among the non-photosynthetic microbes, where the Bacillus spp.—B. thuringiensis and B. cereus strains have been shown to produce H2 and PHB in same medium under different conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kalia VC, Purohit HJ (2008) Microbial diversity and genomics in aid of bioenergy. J Ind Microbiol Biotechnol 35:403–419

    Article  PubMed  CAS  Google Scholar 

  2. Chanprateep S (2010) Current trends in biodegradable polyhydroxyalkanoates. J Biosci Bioeng 110:621–632

    Article  PubMed  CAS  Google Scholar 

  3. Hallenbeck PC, Ghosh D, Skonieczny MT, Yargeau V (2009) Microbiological and engineering aspects of biohydrogen production. Indian J Microbiol 49:48–59

    Article  CAS  Google Scholar 

  4. Reddy CSK, Ghai R, Rashmi, Kalia VC (2003) Polyhydroxyalkanoates: an overview. Bioresour Technol 87:137–146

    Article  PubMed  CAS  Google Scholar 

  5. Kumar T, Singh M, Purohit HJ, Kalia VC (2009) Potential of Bacillus sp. to produce polyhydroxybutyrate from biowaste. J Appl Microbiol 106:2017–2023

    Article  PubMed  CAS  Google Scholar 

  6. Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811

    Article  CAS  Google Scholar 

  7. Van der Voort M, Abee T (2009) Transcriptional regulation of metabolic pathways, alternative respiration and enterotoxin genes in anaerobic growth of Bacillus cereus ATCC 14579. J Appl Microbiol 107:795–804

    Article  PubMed  Google Scholar 

  8. Kalia VC, Jain SR, Kumar A, Joshi AP (1994) Fermentation of biowaste to hydrogen by Bacillus licheniformis. World J Microbiol Biotechnol 10:224–227

    Article  CAS  Google Scholar 

  9. Kotay SM, Das D (2007) Microbial hydrogen production with Bacillus coagulans IIT-BT S1 isolated from anaerobic sewage sludge. Bioresour Technol 98:1183–1190

    Article  PubMed  CAS  Google Scholar 

  10. Patel SKS, Purohit HJ, Kalia VC (2010) Dark fermentative hydrogen production by defined mixed microbial cultures immobilized on ligno-cellulosic waste materials. Int J Hydrogen Energy 35:10674–10681

    Article  CAS  Google Scholar 

  11. Porwal S, Kumar T, Lal S, Rani A, Kumar S, Cheema S, Purohit HJ, Sharma R, Patel SKS, Kalia VC (2008) Hydrogen and polyhydroxybutyrate producing abilities of microbes from diverse habitats by dark fermentative process. Bioresour Technol 99:5444–5451

    Article  PubMed  CAS  Google Scholar 

  12. Kalia VC, Lal S, Cheema S (2007) Insight into the phylogeny of polyhydroxyalkanoates biosynthesis: horizontal gene transfer. Gene 389:19–26

    Article  PubMed  CAS  Google Scholar 

  13. Singh M, Patel SKS, Kalia VC (2009) Bacillus subtilis as potential producer for polyhydroxyalkanoates. Microb Cell Fact 8:38

    Article  PubMed  Google Scholar 

  14. Kim BS, Chang HN (1998) Production of poly(3-hydroxybutyrate) from starch by Azotobacter chroococcum. Biotechnol Lett 29:109–112

    Article  Google Scholar 

  15. Agrawal P, Hema R, Kumar SM (2007) Experimental investigation on biological hydrogen production using different biomass. J Tecknologi Keluaram Khas Dis 47:13–24

    Google Scholar 

  16. Hustede E, Steinbuchel A, Schlegel HG (1993) Relationship between the photoproduction of hydrogen and the accumulation of PHB in non-sulphur purple bacteria. Appl Microbiol Biotechnol 39:87–93

    CAS  Google Scholar 

  17. Lee CM, Chen PC, Wang CC, Tung YC (2002) Photohydrogen production using purple non-sulfur bacteria with hydrogen fermentation reactor effluent. Int J Hydrogen Energy 27:1309–1313

    Article  CAS  Google Scholar 

  18. Vincenzini M, Marchini A, Ena A, de Philippis R (1997) H2 and poly-b-hydroxybutyrate, two alternative chemicals from purple non-sulfur bacteria. Biotechnol Lett 19:759–762

    Article  CAS  Google Scholar 

  19. Yigit DO, Gunduz U, Turker L, Yucel M, Eroglu I (1999) Identification of by-products in hydrogen producing bacteria; Rhodobacter sphaeroides O.U. 001 grown in the wastewater of a sugar refinery. J Biotechnol 70:125–131

    Article  CAS  Google Scholar 

  20. Ntaikou I, Kourmentza C, Koutrouli EC, Stamatelatou K, Zampraka A, Kornaros M, Lyberatos G (2009) Exploitation of olive oil mill wastewater for combined hydrogen and biopolymer production. Bioresour Technol 100:3724–3730

    Article  PubMed  CAS  Google Scholar 

  21. Venkata Mohan S, Reddy MV, Subhash GV, Sarma PN (2010) Fermentative effluents from hydrogen producing bioreactor as substrate for poly(β-OH) butyrate production with simultaneous treatment: an integrated approach. Bioresour Technol 101:9382–9386

    Article  PubMed  CAS  Google Scholar 

  22. Yan Q, Zhao M, Miao H, Ruan W, Song R (2010) Coupling of the hydrogen and polyhydroxyalkanoates (PHA) production through anaerobic digestion from Taihu blue algae. Bioresour Technol 101:4508–4512

    Article  PubMed  CAS  Google Scholar 

  23. Kalia VC, Purohit HJ (2011) Quenching the quorum sensing system: potential antibacterial drug targets. Crit Rev Microbiol 37:121–140

    Article  PubMed  CAS  Google Scholar 

  24. Kalia VC, Raju SC, Purohit HJ (2011) Genomic analysis reveals versatile organisms for quorum quenching enzymes: acyl-homoserine lactone-acylase and -lactonase. Open Microbiol J 5:1–13

    Article  PubMed  CAS  Google Scholar 

  25. Valappil SP, Rai R, Bucka C, Roy I (2008) Polyhydroxyalkanoate biosynthesis in Bacillus cereus SPV under varied limiting conditions and an insight into the biosynthetic genes involved. J Appl Microbiol 104:1624–1635

    Article  PubMed  CAS  Google Scholar 

  26. Kalia VC, Chauhan A, Bhattacharyya G, Rashmi (2003) Genomic databases yield novel bioplastic producers. Nat Biotechnol 21:845–846

    Article  PubMed  CAS  Google Scholar 

  27. Sung S, Raskin L, Duangmanee T, Padmasiri S, Simmons JJ (2002). Hydrogen production by anaerobic microbial communities exposed to repeated heat treatments, In: Proceedings of the 2002 US DOE hydrogen program review, NREL/CP-610- 324052002

  28. Kumar A, Jain SR, Sharma CB, Joshi AP, Kalia VC (1995) Increased hydrogen production by immobilized microorganisms. World J Microbiol Biotechnol 11:156–159

    Article  CAS  Google Scholar 

  29. Verlinden RAJ, Hill DJ, Kenward MA, Williams CD, Radecka I (2007) Bacterial synthesis of biodegradable polyhydroxyalkanoates. J Appl Microbiolol 102:1437–1449

    Article  CAS  Google Scholar 

  30. Kalia VC, Drevon JJ, Salsac L (1985) Nitrogenase and uptake hydrogenase activities of Rhizobium japonicum during the life cycle of Glycine max (L) merr. Plant Sci 39:17–24

    Article  CAS  Google Scholar 

  31. Kalia VC, Lal S, Ghai R, Mandal M, Chauhan A (2003) Mining genomic databases to identify novel hydrogen producers. Trends Biotechnol 21:152–156

    Article  PubMed  CAS  Google Scholar 

  32. Vijayendra SVN, Rastogi NK, Shamala TR, Anil Kumar PK, Kshama L, Joshi GL (2007) Optimization of polyhydroxybutyrate production by Bacillus sp. CFR 256 with corn steep liquor as a nitrogen source. Indian J Microbiol 47:170–175

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors wish to thank Director of Institute of Genomics and Integrative Biology (IGIB), CSIR and Department of Biotechnology, Government of India for providing the necessary funds, facilities and moral support. S.K.S. Patel and M. Singh are thankful to CSIR and UGC for Senior Research Fellowships.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipin C. Kalia.

Additional information

Sanjay K. S. Patel and Mamtesh Singh contributed equally to this paper.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Patel, S.K.S., Singh, M. & Kalia, V.C. Hydrogen and Polyhydroxybutyrate Producing Abilities of Bacillus spp. From Glucose in Two Stage System. Indian J Microbiol 51, 418–423 (2011). https://doi.org/10.1007/s12088-011-0236-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12088-011-0236-9

Keywords

Navigation