Skip to main content

Advertisement

Log in

Bioprocess Scale-up for Acetohydroxamic Acid Production by Hyperactive Acyltransferase of Immobilized Rhodococcus Pyridinivorans

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this study, Rhodococcus pyridinivorans cells containing hyperactive acyltransferase was immobilized on various macromolecules based-polymeric matrices and used to improve acetohydroxamic acid production. The calcium-alginate-based matrix retained the maximum residual activity up to 97.8% as compared to free cells (576 U/mg of dry cell weight). After immobilization, cells exhibited a significant improvement in their tolerance towards pH, temperature, and metal ions as potent enzyme inhibitors. Immobilized cells showed 25.5-fold higher thermal stability at 60 °C to control (free cells). Compared to free cells, immobilized cells exhibited a high bioconversion of acetamide and hydroxylamine-HCl to acetohydroxamic acid up to 96% molar conversion. Repeated bench-scale production at 3-L culture, immobilized cells showed 9.5-fold higher residual conversion as compared to control (100%), after five cycles of reuses. The product characterization achieved high purity (97%) of acetohydroxamic acid. This finding showed high feasibility to achieve efficient conversion that can be scaled up to the industrial level for biotechnological application.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Kim J-S, Patel SKS, Tiwari MK, Lai C, Kumar A, Kim YS, Kalia VC, Lee J-K (2020) Int J Mol Sci 21:7859

    Article  CAS  Google Scholar 

  2. Chhiba-Gonindjee VP, van der Westhuyzen CW, Bode ML, Brady D (2019) Appl Microbiol Biotechnol 103:4679–4692

    Article  Google Scholar 

  3. Ruan LT, Zheng RC, Zheng YG (2016) J Ind Microbial Biotechnol 43:1071–1083

    Article  CAS  Google Scholar 

  4. Pandey D, Singh R, Chand D (2011) Bioresour Technol 102:6579–6586

    Article  CAS  Google Scholar 

  5. Singh RV, Sharma H, Gupta P, Kumar A, Babu V (2019) Indian J Biochem Biophys 56:373–377

    CAS  Google Scholar 

  6. Fournand D, Bigey F, Arnaud A (1998) App Env Microbiol 64:2844–2852

    Article  CAS  Google Scholar 

  7. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2013) J Ind Microbiol Biotechnol 40:21–27

    Article  CAS  Google Scholar 

  8. Prabha R, Nigam V (2020) Biocatal Biotransform 38:445–456

    Article  CAS  Google Scholar 

  9. Pai O, Banoth L, Ghosh S, Chisti Y, Banergee UC (2014) Process Biochem 49:655–659

    Article  CAS  Google Scholar 

  10. Ismailsab M, Monisha TR, Pooja V, Santoshkumar M, Anand SN, Timmanagouda BK (2017) Biocatal Biotransform 35:74–85

    Article  CAS  Google Scholar 

  11. Sharma M, Sharma NN, Bhalla TC (2012) Indian J Microbiol 52:76–82

    Article  CAS  Google Scholar 

  12. Bhatia RK, Bhatia SK, Mehta PK, Bhalla TC (2014) J Mol Catal B Enzym 108:89–95

    Article  CAS  Google Scholar 

  13. Mohammad AA (2019) Curr Org Chem 23:978–993

    Article  Google Scholar 

  14. Agarwal S, Gupta M, Choudhury B (2013) J Ind Microbiol Biotechnol 40:937–946

    Article  CAS  Google Scholar 

  15. Ansu K, Poonam S, Attri CS, Seth A (2016) Res J Chem Environ 20:35–47

    CAS  Google Scholar 

  16. Dong A, Brown C, Bai S, Dong J (2018) Int J Biol Macromol 112:591–597

    Article  CAS  Google Scholar 

  17. Sogani M, Mathur N, Bhatnagar P, Sharma P (2012) Int J Environ Sci Technol 9:119–127

    Article  CAS  Google Scholar 

  18. Lin CP, Wu ZM, Tang XL, Hao CL, Zheng RC, Zheng YG (2019) Bioresour Technol 274:371–378

    Article  CAS  Google Scholar 

  19. Maksimova YG, Gorbunovaa AN, Zorinac AS, Maksimov AU, Ovechkinaa GV, Demakova V (2015) Appl Biochem Microbiol 51:64–69

    Article  CAS  Google Scholar 

  20. Lin C, Xu K, Zheng R, Zheng Y (2019) Chem Commun 55:5697–5700

    Article  CAS  Google Scholar 

  21. Mortazavi S, Aghaei H (2020) Int J Biol Macromol 64:1–12

    Article  Google Scholar 

  22. Anisha GS, Prema P (2008) Bioresour Technol 99:3325–3330

    Article  CAS  Google Scholar 

  23. Lassouane F, Aït-Amar H, Amrani S, Rodriguez-Couto S (2019) Bioresour Technol 271:360–367

    Article  CAS  Google Scholar 

  24. Mohamad NR, Marzuki NHC, Buang NA, Huyop F, Wahab RA (2015) Biotechnol Biotechnol Equip 29:205–220

    Article  CAS  Google Scholar 

  25. Sogani M, Mathur N, Sharma P, Bhatnagar P (2012) J Environ Res Dev 6:695–701

    Google Scholar 

  26. Kumari P, Duni C (2017) J Innov Pharma Biol Sci 4:121–127

    CAS  Google Scholar 

  27. Bernardo M, Pachecoa R, Serralheirob MLM, Karmalia A (2013) J Mol Catal B Enzym 93:28–33

    Article  CAS  Google Scholar 

  28. Dereeper A, Guignon V, Blanc G, Audic S, Buffet S, Chevenet F, Dufayard JF, Guindon S, Lefort V, Lescot M, Claverie JM, Gascuel O (2008) Nucleic Acids Res 1:465–469

    Article  Google Scholar 

  29. Bhalla TC, Miura A, Wakamoto A, Ohba Y, Furuhashi K (1992) Appl Microbiol Biotechnol 37:184–190

    Article  CAS  Google Scholar 

  30. Patel SKS, Shanmugam R, Kalia VC, Lee JK (2020) Bioresour Technol 304:e123022

    Article  Google Scholar 

  31. Patel SKS, Kumar V, Mardina P, Li J, Lestari R, Kalia VC, Lee J-K (2018) Bioresour Technol 263:25–32

    Article  CAS  Google Scholar 

  32. Bedade DK, Singhal RS (2018) Bioresour Technol 261:122–132

    Article  CAS  Google Scholar 

  33. Wahab RA, Elias N, Abdullah F, Ghoshal SK (2020) React Funct Polym 152:e104613

    Article  Google Scholar 

  34. Singh R, Pandey D, Devi N, Chand D (2018) Bioproc Biosyst Eng 8:225–1232

    Google Scholar 

  35. Singh RV, Sharma H, Ganjoo A, Kumar A, Babu V (2020) J Appl Microbiol 129:1589–1597

    Article  CAS  Google Scholar 

  36. Pandey D, Patel SKS, Singh R, Kumar P, Thakur V, Chand D (2019) Indian J Microbiol 59:500–507

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are highly grateful to the Department of Biotechnology, Himachal Pradesh University, Shimla, India, for providing the laboratory and chemical facilities during the study. Computational Facility of Bioinformatics Centre, Himachal Pradesh University Shimla is also duly acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Duni Chand.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 643 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Devi, N., Patel, S.K.S., Kumar, P. et al. Bioprocess Scale-up for Acetohydroxamic Acid Production by Hyperactive Acyltransferase of Immobilized Rhodococcus Pyridinivorans. Catal Lett 152, 944–953 (2022). https://doi.org/10.1007/s10562-021-03696-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-021-03696-4

Keywords

Navigation