Skip to main content

Advertisement

Log in

Morphophysiological in vitro performance of Brazilian ginseng (Pfaffia glomerata (Spreng.) Pedersen) based on culture medium formulations

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Pfaffia glomerata has potential pharmacological and medicinal properties due to the production of a secondary metabolite known as the phytoecdysteroid 20-hydroxyecdysone (20E). There have been increasing efforts for massive in vitro propagation of Pfaffia plants due to high extractivism and overharvesting of this species. Research on the species has shown that photoautotrophic cultivation can improve the production of 20E. In addition, other abiotic factors such as the formulations of culture media can influence the morphophysiological behavior of the plants in vitro. Therefore, the objective of this study was to analyze the morphological and physiological performances of P. glomerata plants in different formulations of culture media, under photoautotrophic and photomixotrophic propagation conditions. Six medium formulations, the Driver and Kuniyuki medium (DKW), Correia et al. medium (JADS), Murashige and Skoog medium (MS), Quoirin and Lepoivre medium (QL), Rugini medium (OM), and Woody Plant medium (WPM), all supplemented with DKW vitamins, 100 mg L−1 myo-inositol, 6.5 g L−1 agar, and with or without 3% (w/v) sucrose, were evaluated. Cultures were maintained at 25 ± 2°C, with a 16 h-photoperiod under 60 μmol m−2 s−1 of irradiance under a fluorescent lamp for 50 d. Results showed that the presence or absence of sucrose, and the different nutritional formulations influenced growth, photosynthetic pigment content, endogenous levels of sugars, leaf morphology, levels of 20E, and transport of water and minerals in P. glomerata. Notably, OM, DKW, QL, and WPM media promoted higher production of 20E under photomixotrophic growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Aranda-Peres AN, Peres LEP, Higashi EN, Martinelli AP (2009) Adjustment of mineral elements in the culture medium for the micropropagation of three Vriesea bromeliads from the Brazilian Atlantic Forest: the importance of calcium. Sci Hortic 44:106–112

    Google Scholar 

  • Batista DS, Dias LLC, Rêgo MMD, Saldanha CW, Otoni WC (2017) Flask sealing on in vitro seed germination and morphogenesis of two types of ornamental pepper explants. Cienc Rural 47:1–6

  • Batista DS, Felipe SHS, Silva TD, Castro KM, Mamedes-Rodrigues TC, Miranda NA, Ríos-Ríos AM, Faria DV, Fortini EA, Torres-Silva G, Xavier A, Arencibia AD, Otoni WC (2018) Light quality in plant tissue culture: does it matter? In Vitro Cell Dev Biol-Plant 54:195–215

    Article  CAS  Google Scholar 

  • Boo KH, Lee D, Nguyen QV, Jin SB, Kang S, Viet CD, Park SP, Lee DS, Riu KZ (2013) Fluctuation of 20-hydroxyecdysone in individual organs of Achyranthes japonica during reproductive growth stage and its accumulation into seed. J Korean Soc Appl Biol Chem 56:335–338

    Article  CAS  Google Scholar 

  • Carvalho MDJDS, Souza ADS, Santos EB, Soares-Filho WDS, Ledo CADS, Souza FVD (2016) Univariate and multivariate statistical tools for in vitro conservation of citrus genotypes. Acta Sci Agron 38:129–137

    Article  Google Scholar 

  • Corrêa JPO, Vital CE, Pinheiro MVM, Batista DS, Azevedo JFL, Saldanha CW, Otoni WC (2015) In vitro photoautotrophic potential and ex vitro photosynthetic competence of Pfaffia glomerata (Spreng.) Pedersen accessions. Plant Cell Tissue Organ Cult 121:289–300

    Article  CAS  Google Scholar 

  • Correia D, Gonçalves AN, Couto HYZ, Ribeiro MC (1995) Efeito do meio de cultura líquido e sólido no crescimento e desenvolvimento de gemas de Eucalyptus grandis x Eucalyptus urophylla na multiplicação in vitro. IPEF 48/49:107–116

  • Dai Y, Shen Z, Liu Y, Wang L, Hannaway D, Lu H (2009) Effects of shade treatments on the photosynthetic capacity, chlorophyll fluorescence, and chlorophyll content of Tetrastigma hemsleyanum Diels et Gilg. J Exp Bot 65:177–182

    Article  CAS  Google Scholar 

  • Dinan L, Harmatha J, Volodin V, Lafont R (2009) Phytoecdysteroids: diversity, biosynthesis and distribution. In: Smagghe G (ed) Ecdysone: structures and functions. Springer, Dordrecht, pp 3–10

    Chapter  Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut root stock (Juglan shindsii x Juglans regia). HortScience 19:507–509

  • Esserti S, Faize M, Rifai LA, Smaili A, Belfaiza M, Faize L, Alburquerque N, Burgos L, Koussa T, Makroum K (2017) Media derived from brown seaweeds Cystoseira myriophylloides and Fucus spiralis for in vitro plant tissue culture. Plant Cell Tissue Organ Cult 128:437–446

    Article  CAS  Google Scholar 

  • Faria DV, Freitas Correia LN, Matos EM, Souza CMV, Batista DS, Costa MGC, Paiva Neto VB, Xavier A, Rogalski M, Otoni WC (2019) Wounding and medium formulation affect de novo shoot organogenic responses in hypocotyl-derived explants of annatto (Bixa orellana L.). In Vitro Cell Dev Biol-Plant 55:277–289

  • Fernie AR, Roscher A, Ratcliffe RG, Kruger NJ (2001) Fructose 2,6-bisphosphate activates pyrophosphate: fructose-6-phosphate 1-phosphotransferase and increases triose phosphate to hexose phosphate cycling in heterotrophic cells. Planta 212:250–263

    Article  CAS  PubMed  Google Scholar 

  • Festucci-Buselli RA, Contim LA, Barbosa LCA, Stuart J, Otoni WC (2008a) Biosynthesis and potential functions of the ecdysteroid 20-hydroxyecdysone — a review. Botany 6:978–987

    Article  Google Scholar 

  • Festucci-Buselli RA, Contim LAS, Barbosa LCA, Stuart JJ, Veira RF, Otoni WC (2008b) Level and distribution of 20-hydroxyecdysone during Pfaffia glomerata development. Braz J Plant Physiol 20:53–60

    Article  Google Scholar 

  • Flores R, Gimenes ES, Maldaner J (2015) Production of β-ecdysone in vitro–cultured Brazilian ginseng Pfaffia glomerata (Spreng.) Pedersen. J Hortic Sci Biotechnol 190:109–114

    Article  Google Scholar 

  • Fuentes SR, Calheiros MB, Manetti-Filho J, Vieira LG (2000) The effects of silver nitrate and different carbohydrate sources on somatic embryogenesis in Coffea canephora. Plant Cell Tissue Organ Cult 60:5–13

    Article  CAS  Google Scholar 

  • Gentile A, Frattarelli A, Nota P, Condello E, Caboni E (2017) The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L. Plant Cell Tissue Organ Cult 128:693–603

    Article  CAS  Google Scholar 

  • Gomes ACM, Nicole M, Mattos JK, Pereira SIV, Pereira P, Silva DB, Carneiro RM (2010) Concentration of β-ecydisone (20E) in susceptible and resistant accessions of Pfaffia glomerata infected with Meloidogyne incognita and histological characterisation of resistance. Nematology 12:701–709

    Article  CAS  Google Scholar 

  • Gribble K, Conroy JP, Holford P, Milham PJ (2002) In vitro uptake of minerals by Gypsophila paniculata and hybrid eucalypts, and relevance to media mineral formulation. Aust J Bot 50:713–723

    Article  CAS  Google Scholar 

  • Guo B, He W, Zhao Y, Wu Y, Fu Y, Guo J, Wei Y (2017) Changes in endogenous hormones and H2O2 burst during shoot organogenesis in TDZ-treated Saussurea involucrate explants. Plant Cell Tissue Organ Cult 128:1–8

    Article  CAS  Google Scholar 

  • Hung CD, Hong C-H, Kim S-K, Lee K-H, Park J-Y, Nam M-W, Choi D-H, Lee H-I (2016) LED light for in vitro and ex vitro efficient growth of economically important highbush blueberry (Vaccinium corymbosum L.). Acta Physiol Plant 38:1–9

    Article  CAS  Google Scholar 

  • Iarema L (2008) Enxertia e propagação in vitro de fáfia [Pfaffia glomerata (Spreng.) Pedersen]. PhD Thesis, Universidade Federal de Viçosa, Viçosa, Brazil. http://www.locus.ufv.br/handle/123456789/352

  • Iarema L, Cruz ACF, Saldanha CW, Dias LLC, Vieira RF, Oliveira EJ, Otoni WC (2012) Photoautotrophic propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:227–138

  • John R, Shajitha PP, Devassy A, Mathew L (2018) Effect of elicitation and precursor feeding on accumulation of 20-hydroxyecdysone in Achyranthes aspera Linn. cell suspension cultures. Physiol Mol Biol Plants 24:275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kamada T (2006) Avaliação da diversidade genética de populações de fáfia (Pfaffia glomerata (Spreng.) Pedersen) por RAPD, caracteres morfológicos e teor de beta-ecdisona. PhD Thesis, Universidade Federal de Viçosa, Viçosa, Brazil. http://www.locus.ufv.br/bitstream/handle/123456789/1298/texto%20completo.pdf?sequence=1

  • Karnovsky MJ (1965) A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J Cell Biol 27:137–138

    Google Scholar 

  • Kozai T, Kubota C (2001) Developing a photoautotrophic micropropagation system for woody plants. J Plant Res 114:525–537

    Article  Google Scholar 

  • Kozai T, Sekimoto K (1988) Effect of the number of air exchanges per hour of the closed vessel and the photosynthetic photon flux on the carbon dioxide concentration inside the vessel and the growth of strawberry plantlets in vitro. Environ Control Biol 26:21–29

    Article  CAS  Google Scholar 

  • Lembrechts R, Ceusters N, De Proft MP, Ceusters J (2017) Sugar and starch dynamics in the medium-root-leaf system indicate possibilities to optimize plant tissue culture. Sci Hortic 224:226–231

    Article  CAS  Google Scholar 

  • Lloyd G, McCown B (1980) Commercially-feasible micropropagation of mountain laurel, Kalmia latifolia, by use of shoot-tip culture. Proc Int Plant Prop Soc 30:421–427

    Google Scholar 

  • Loneragan JF, Asher CJ (1982) Response of plants to phosphate concentration in solution culture: II. Rate of phosphate absorption and its relation to growth. Soil Sci 103:311–318

    Article  Google Scholar 

  • Mamedes-Rodrigues TC, Batista DS, Napoleão TA, Cruz ACF, Fortini EA, Nogueira FTS, Romanel E, Otoni WC (2017) Lignin and cellulose synthesis and antioxidative defense mechanisms are affected by light quality in Brachypodium distachyon. Plant Cell Tissue Organ Cult 133:1–14

    Article  CAS  Google Scholar 

  • McCarthy A, Chung M, Ivanov AG, Krol M, Inman M, Maxwell DP, Hüner NP (2016) An established Arabidopsis thaliana var. Landsberg erecta cell suspension culture accumulates chlorophyll and exhibits a stay-green phenotype in response to high external sucrose concentrations. J Plant Physiol 199:40–51

    Article  CAS  PubMed  Google Scholar 

  • Mengel K, Kirkby EA (1987) Principles of plant nutrition. International Potash Institute, Zug, Switzerland

  • Mukherjee SK, Rathinasabapathi B, Gupta N (1991) Low sugar and osmotic requirements for shoot regeneration from leaf pieces of Solanum melongena L. Plant Cell Tissue Organ Cult 25:13–16

    Article  CAS  Google Scholar 

  • Muneer S, Park YG, Jeong BR (2018) Red and blue light emitting diodes (LEDs) participate in mitigation of hyperhydricity in in vitro-grown carnation genotypes (Dianthus caryophyllus). J Plant Growth Regul 37:370–379

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • O’Brien TP, McCully ME (1981) The study of plant structure principles and selected methods. Termarcarphi Pty Ltd, Melbourne

    Google Scholar 

  • Ohyama K, Suzuk M, Kikuchi J, Saito K, Muranaka T (2009) Dual biosynthetic pathways to phytosterol via cycloartenol and lanosterol in Arabidopsis. Proc Natl Acad Sci U S A 106:725–730

    Article  PubMed  PubMed Central  Google Scholar 

  • Oliveira C, Degenhardt-Goldbach J, França Bettencourt GM, Amano E, Franciscon L, Quoirin M (2017) Micropropagation of Eucalyptus grandis × E. urophylla AEC 224 clone. J For Res 28:29–39

    Article  CAS  Google Scholar 

  • Ozudogru EA, Benelli C, Dradi G, Lambardi M (2017) Effect of culture container and carbohydrate content on in vitro slow growth storage of the cherry rootstock ‘Gisela® 5’. Acta Physiol Plant 39:–94

  • Paiva-Neto VB, Otoni WC (2003) Carbon sources and their osmotic potential in plant tissue culture: does it matter? Sci Hortic 97:193–202

    Article  CAS  Google Scholar 

  • Phillips GC, Garda M (2019) Plant tissue culture media and practices: an overview. In Vitro Cell Dev Biol-Plant 55:242–257

    Article  Google Scholar 

  • Porra RJ, Thompson WA, Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochim Biophys Acta 975:384–394

    Article  CAS  Google Scholar 

  • Quoirin M, Lepoivre P (1977) Improved medium for in vitro culture of Prunus sp. Acta Hortic 78:437–442

    Article  Google Scholar 

  • Ramage CM, Williams RR (2002) Mineral nutrition and plant morphogenesis. In Vitro Cell Dev Biol-Plant 38:116–124

    Article  CAS  Google Scholar 

  • Rugini E (1984) In vitro propagation of some olive (Oleaeuropaea sativa L.) cultivars with different root-ability, and medium development using analytical data from developing shoots and embryos. Sci Hortic 24:123–134

    Article  CAS  Google Scholar 

  • Russowski D, Nicoloso FT (2003) Nitrogênio e fósforo no crescimento de plantas de ginseng brasileiro [Pfaffia glomerata (Spreng.) Pedersen] cultivadas in vitro. Cienc Rural 33:57–63

  • Safaya NM (1976) Phosphorus-zinc interaction in relation to absorption rates of phosphorus, zinc, copper, manganese, and iron in corn. Soil Sci Soc Am J 40:719–722

    Article  CAS  Google Scholar 

  • Saldanha CW, Otoni CG, Notini MM, Kuki KN, Cruz ACF, Neto AR, Dias, LLC, Otoni WC (2013) A CO2-enriched atmosphere improves in vitro growth of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. In Vitro Cell Dev Biol-Plant 49:433–444

  • Saldanha CW, Otoni CG, Rocha DI, Cavatte PC, Detmann KSC, Tanaka FAO, Dias LLC, DaMatta FM, Otoni WC (2014) A CO2-enriched atmosphere and supporting material impact the growth morphophysiology and ultrastructure of in vitro Brazilian-ginseng [Pfaffia glomerata (Spreng.) Pedersen] plantlets. Plant Cell Tissue Organ Cult 118:87–99

  • Schneider CA, Rasband WS, Eliceiri KW (2012) NIH image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shahzad A, Sharma S, Parveen S, Saeed T, Shaheen A, Akhtar R, Yadav V, Upadhyay A, Ahmad Z (2017) Historical perspective and basic principles of plant tissue culture. In: Abdin M, Kiran U, Kamaluddin Ali A (eds) Plant biotechnology: principles and applications. Springer, Singapore

    Google Scholar 

  • Silva ST, Bertolucci SKV, Cunha SHB, Lazzarini LES, Tavares MC, Pinto JEBP (2017) Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tissue Organ Cult 129:501–510

    Article  CAS  Google Scholar 

  • Thiem B, Kikowska M, Maliński MP, Kruszka D, Napierała M, Florek E (2017) Ecdysteroids: production in plant in vitro cultures. Phytochem Rev 16:603–622

  • Thussagunpanit J, Jutamanee K, Homvisasevongsa S, Suksamrarn A, Yamagami A, Nakano T, Asami T (2017) Characterization of synthetic ecdysteroid analogues as functional mimics of brassinosteroids in plant growth. J Steroid Biochem Mol Biol 172:1–8

    Article  CAS  PubMed  Google Scholar 

  • Tsukagoshi Y, Ohyama K, Seki H, Akashi T, Muranaka T, Suzuki H, Fujimoto Y (2016) Functional characterization of CYP71D443, a cytochrome P450 catalyzing C-22 hydroxylation in the 20-hydroxyecdysone biosynthesis of Ajuga hairy roots. Phytochemistry 127:23–28

    Article  CAS  PubMed  Google Scholar 

  • Vasconcelos JM, Saldanha CW, Dias LLC, Maldaner J, Rêgo MM, Silva LC, Otoni WC (2014) In vitro propagation of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen] as affected by carbon sources. In Vitro Cell Dev Biol-Plant 50:746–751

    Article  CAS  Google Scholar 

  • Whatley JM, Whatley FR (1981) Chloroplast evolution. New Phytol 87:233–247

    Article  CAS  Google Scholar 

  • Xiao Y, Kozai T (2006) In vitro multiplication of statice plantlets using sugar-free media. Sci Hortic 109:71–77

    Article  CAS  Google Scholar 

  • Zhang WB, Piao XC, Li JR, Jin YH, Lian ML (2017) Optimized culture medium for the production of flavonoids from Orostachys cartilaginea VN Boriss. callus cultures. In Vitro Cell Dev Biol-Plant 53:1–11

    Article  CAS  Google Scholar 

  • Zhou H, Zheng Y, Konzak CF (1991) Osmotic potential of media affecting green plant percentage in wheat anther culture. Plant Cell Rep 10:63–66

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. Takeshi Kamada (Universidade de Rio Verde, Rio Verde, GO, Brazil), Dr. Roberto Fontes Vieira and Dr. Rosa Belém Alves Neves (National Center for Genetic Resources and Biotechnology - Embrapa/Cenargen, Brasília, DF, Brazil) for providing the Pfaffia glomerata accession. The Departments of Plant Biology, Biochemistry and Molecular Biology, and Food Technology, from Federal University of Viçosa, are gratefully acknowledged for providing the facilities for structural analyses, quantifications of 20E, sugar and photosynthetic pigment evaluations, and analyses of the osmotic potential of culture media, respectively.

Funding

The Brazilian sponsoring Agencies, namely FAPEMIG (Belo Horizonte, MG), CNPq (Brasília, DF), and CAPES (Brasília, DF) are acknowledged for financial support, research fellowship, and scholarships granted.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wagner Campos Otoni.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Additional information

Editor: Randall P. Niedz

Electronic supplementary material

Supplementary Figure 1

Cross sections of the median portion of leaves of Pfaffia glomerata plantlets propagated in the JADS (Correia et al. 1995), MS (Murashige and Skoog 1962), QL, and OM (Rugini 1984) basal medium components with (+) or without (−) sucrose (Suc). Main vein of the median portion of the leaf (A, C, E, G, I). Details of leaf blade (B, D, F, H, J). Abbreviations: Co - Colenchyma; Ad- Epidermis adaxial surface; Ab - Epidermis abaxial surface; St - Stomata; Vb - Vascular bundle; Pp - Palisade parenchyma; Sp - Spongy parenchyma; and Tr - Trichome. Bar = 100 μm. Note: There was not enough plant material for anatomical analysis of the JADS treatment without sucrose. (JPG 545 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, T.D., Chagas, K., Batista, D.S. et al. Morphophysiological in vitro performance of Brazilian ginseng (Pfaffia glomerata (Spreng.) Pedersen) based on culture medium formulations. In Vitro Cell.Dev.Biol.-Plant 55, 454–467 (2019). https://doi.org/10.1007/s11627-019-10003-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-019-10003-9

Keywords

Navigation