Skip to main content
Log in

Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The aim of the current study is to investigate the influence of light intensity, quality of light and alternative membrane sytems on the growth and headspace-GC/MS chemical analysis of Plectranthus amboinicus cultivated in vitro. Nodal segments were grown under light intensities (26, 51, 69, 94 and 130 µmol m−2 s−1) provided by cool-white fluorescent lamps. Apical segments were grown under light-emitting diodes blue; red; 1 blue/2.5 red; 2.5 blue/1 red; 1 blue/1 red and white fluorescent lamps. Apical and nodal segments were grown under alternative membrane and membrane-free systems. One, two or four PTFE membranes were used on the lid of the culture vessel. The membranes provided natural ventilation and worked as filters. The results have shown significant differences in the growth and carvacrol content, as well as in the content of carvacrol precursors (γ-terpinene and p-cymene) in different treatments. Among all tested light intensities, the significant increase in the dry weight and in the carvacrol content of plantlets derived from the nodal segments was recorded at 69 µmol m−2 s−1. The monochromatic red led to greater shoot length and higher dry weight in plantlets derived from the apical segments, as well as to carvacrol accumulation greater than that provided by the fluorescent lamps. The culture vessel enclosure by one and two membranes led to higher dry weight in plantlets derived from the apical and nodal segments, respectively. They also showed higher carvacrol content. Thus, it is possible optimizing the growth and carvacrol content in P. amboinicus cultivated in vitro by adjusting these environmental parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

GC/MS:

Gas chromatography/mass spectrometry

LED:

Light emitting diodes

R:

Red

B:

Blue

F:

Fluorescent

NMS:

No membrane system

AMS:

Alternative membrane system

AMS1:

Alternative membrane system with one filter

AMS2:

Alternative membrane system with two filters

AMS4:

Alternative membrane system with four filters

PTFE:

Polytetrafluoroethylene

References

  • Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectrometry, 4th edn. Allured Publishing Corporation, Carol Stream, p 804

    Google Scholar 

  • Alvarenga ICA, Pacheco FV, Silva ST, Bertolucci SKV, Pinto JEBP (2015) In vitro culture of Achillea millefolium L.: quality and intensity of light on growth and production of volatiles. Plant Cell Tissue Organ Cult 122:299–308. doi:10.1007/s11240-015-0766-7

    Article  CAS  Google Scholar 

  • Arumugam G, Swamy MK, Sinniah UR (2016) Plectranthus amboinicus (Lour.) Spreng: botanical, phytochemical, pharmacological and nutritional significance. Molecules 21:369. doi:10.3390/molecules21040369

    Article  PubMed  Google Scholar 

  • Bassolino L, Giacomelli E, Giovanelli S et al (2015) Tissue culture and aromatic profile in Salvia dolomitica Codd. Plant Cell Tissue Organ Cult 121:83–95. doi:10.1007/s11240-014-0681-3

    Article  CAS  Google Scholar 

  • Cabello MLR, Praena DG, Puerto M et al (2015) In vitro pro-oxidant/antioxidant role of carvacrol, thymol and their mixture in the intestinal Caco-2 cell line. Toxicol In Vitro 29:647–656. doi:10.1016/j.tiv.2015.02.006

    Article  Google Scholar 

  • Chen C (2015) Application of growth models to evaluate the microenvironmental conditions using tissue culture plantlets of Phalaenopsis Sogo Yukidian ‘V3’. Sci Hortic 191:25–30. doi:10.1016/j.scienta.2015.05.007

    Article  Google Scholar 

  • Coste A, Halmagyi A, Keul ALB et al (2012) In vitro propagation and cryopreservation of Romanian endemic and rare Hypericum species. Plant Cell Tissue Organ Cult 110:213–226. doi:10.1007/s11240-012-0144-7

    Article  Google Scholar 

  • Crocoll C (2011) Biosynthesis of the phenolic monoterpenes, thymol and carvacrol, by terpene synthases and cytochrome P450s in oregano and thyme. Dissertation. Friedrich-Schiller-Universität, Jena

    Google Scholar 

  • Darko E, Heydarizadeh P, Schoefs B, Sabzalian MR (2014) Photosynthesis under artificial light: the shift in primary and secondary metabolism. Philos Trans R Soc Lond B 369: 20130243. doi:10.1098/rstb.2013.0243

    Article  Google Scholar 

  • Dool HV, Kratz PD (1963) A generalization of the retention index system including liner temperature programmed gas-liquid partition chromatography. J Chromatogr 11:463–467. doi:10.1016/S0021-9673(01)80947-X

    Article  Google Scholar 

  • Fernandes VF, Almeida LB, Feijó EVRS et al (2013) Light intensity on growth, leaf micromorphology and essential oil production of Ocimum gratissimum. Rev Bras Farmacogn 23: 419–424. doi:10.1590/s0102-695x2013005000041

    Article  CAS  Google Scholar 

  • Ferreira DF (2007) SISVAR—Sistema de Análise de Variância. Versão 5.0. DEX/UFLA, Lavras

    Google Scholar 

  • Fomenkov AA, Nosov AV, Rakitin VY et al (2015) Ethylene in the proliferation of cultured plant cells: regulating or just going along? Russ J Plant Physiol 62:815–822. doi:10.1134/S1021443715060059

    Article  CAS  Google Scholar 

  • Gupta SD, Jatothu B (2013) Fundamentals and applications of light-emitting diodes (LEDs) in in vitro plant growth and morphogenesis. Plant Biotechnol Rep 7:211–220. doi:10.1007/s11816-013-0277-0

    Article  Google Scholar 

  • Hartikainen K, Nerg AM, Kivimäenpää M (2009) et al. Emission of volatile organic compounds and leaf structural characteristics of European aspen (Populus tremula) grown under elevated ozone and temperature. Tree Physiol 29:1163–1173. doi:10.1093/treephys/tpp033

    Article  CAS  PubMed  Google Scholar 

  • Hasibuan PAZA, Chrestella JB, Satria DC (2014) Combination effect of ethylacetate extracts of Plectranthus amboinicus (Lour.) Spreng. with doxorubicin againts T47D breast cancer cells. Int. J Pharm Pharm Sci 7:156–159

    Google Scholar 

  • Holopainen JK (2011) Can forest trees compensate for stress-generated growth losses by induced production of volatile compounds? Tree Physiol 31:1356–1377. doi:10.1093/treephys/tpr111

    Article  CAS  PubMed  Google Scholar 

  • Ignatius A, Arunbabu V, Neethu J, Ramasamy EV (2014) Rhizofiltration of lead using an aromatic medicinal plant Plectranthus amboinicus cultured in a hydroponic nutrient film technique (NFT) system. Environ Sci Pollut Res Int 21:13007–13016. doi:10.1007/s11356-014-3204-1

    Article  CAS  PubMed  Google Scholar 

  • Isah T (2015) Adjustments to in vitro culture conditions and associated anomalies in plants. Acta Biol Cracov Bot 57: 9–28. doi:10.1515/abcsb-2015-0026

    Google Scholar 

  • Jiménez MP, Pérez AJL, Álcon GO et al (2015) A regime of high CO2 concentration improves the acclimatization process and increases plant quality and survival. Plant Cell Tissue Organ Cult 121:547–557. doi:10.1007/s11240-015-0724-4

    Article  Google Scholar 

  • Kaur A, Sandhu JS (2015) High throughput in vitro micropropagation of sugarcane (Saccharum officinarum L.) from spindle leaf roll segments: cost analysis for agri-business industry. Plant Cell Tissue Organ Cult 120:339–350. doi:10.1007/s11240-014-0610-5

    Article  CAS  Google Scholar 

  • Khare RS, Banerjee S, Kundu K (2011) Coleus aromaticus Benth—a nutritive medicinal plant of potential therapeutic value. Int J Pharm Biol Sci 2:488

    Google Scholar 

  • Lichtenthaler HK, Buschmann C (2001) Chlorophylls and carotenoids: measurement and characterization by UV-VIS spectroscopy. In: Wrolstad RE (ed) Current protocols in food analytical chemistry. Wiley, New York. doi:10.1002/0471142913.faf0403s01

    Google Scholar 

  • Macedo AF, Costa MVL, Tavares ES, Lage CLS, Esquibel MA (2011) The effect of light quality on leaf production and development of in vitro-cultured plants of Alternanthera brasiliana Kuntze. Environ Exp Bot 70:43–50. doi:10.1016/j.envexpbot.2010.05.012

    Article  Google Scholar 

  • Manivannan A, Soundararajan P, Halimah N et al (2015) Blue LED light enhances growth, phytochemical contentes, and antioxidante enzyme activities of Rehmannia glutinosa cultured in vitro. Hortic Environ Biotechnol 56:105–113. doi:10.1007/s13580-015-0114-1

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15:473–497. doi:10.1111/j.1399-3054.1962.tb08052.x

    Article  CAS  Google Scholar 

  • Nascimento LBS, Leal-Costa MV, Coutinho MA et al (2013) Increased antioxidant activity and changes in phenolic profile of Kalanchoe pinnata (Lamarck) Persoon (Crassulaceae) specimens grown under supplemental blue light. Photochem Photobiol 89:391–399. doi:10.1111/php.12006

    Article  CAS  PubMed  Google Scholar 

  • NIST (2008) National Institute of Standards and Technology—Chemistry Web Book http://webbook.nist.gov/chemistry. Accessed 30 Aug 2016

  • Poulose AJ, Croteau R (1978) Biosynthesis of aromatic monoterpenes: conversion of γ-terpinene to p-cymene and thymol in Thymus vulgaris L. Arch Biochem Biophys 187:307–314. doi:10.1016/0003-9861(78)90039-5

    Article  CAS  PubMed  Google Scholar 

  • Raven P, Evert RF, Eichhorn SE et al (2014) Biologia vegetal, 8th edn. Guanabara Koogan, Rio de Janeiro, p 1637

    Google Scholar 

  • Runkle SE, Heins RD (2001) Specific functions of red, far red, and blue light in flowering and stem extension of long-day plants. J Am Soc Hortic Sci 126:275–282

    Google Scholar 

  • Saldanha CW, Otoni CG, Azevedo JLF et al (2012) A low-cost alternative membrane system that promotes growth in nodal cultures of Brazilian ginseng [Pfaffia glomerata (Spreng.) Pedersen]. Plant Cell Tissue Organ Cult 110:413–422. doi:10.1007/s11240-012-0162-5

    Article  CAS  Google Scholar 

  • Schurgers G, Hickler T, Miller PA, Arneth A (2009) European emissions of isoprene and monoterpenes from the last glacial maximum to presente. Biogeosciences 6:2779–2797

    Article  CAS  Google Scholar 

  • Silva AB, Correa VRS, Togoro AH, Silva JAS (2014) Efeito da luz e do sistema de ventilação natural em abacaxizeiro (Bromeliaceae) micropropagado. Biosci J 30:380–386

    Google Scholar 

  • Singh D, Basu C, Wollweber MM, Roth B (2015) LEDs for energy efficient greenhouse lighting. Renew Sustain Energy Rev 49:139–147. doi:10.1016/j.rser.2015.04.112

    Article  CAS  Google Scholar 

  • Taiz L, Zeiger E (2004) Fisiologia vegetal. Artmed, Porto Alegre, p 719

    Google Scholar 

  • Trivellini A, Lucchesini M, Maggini R et al (2016) Lamiaceae phenols as multifaceted compounds: bioactivity, industrial prospects and role of “positive-stress”. Ind Crops Prod 83:241–254. doi:10.1016/j.indcrop.2015.12.039

    Article  CAS  Google Scholar 

  • Zhang M, Zhao D, Ma Z, Li X, Xiao Y (2009) Growth and photosynthetic capability of Momordica grosvenori plantlets grown photoautotrophically in response to light intensity. HortScience 44:757–763

    Google Scholar 

  • Zhou M, Guan Q, Wei Y, Zhang Z (2008) Effects of sucrose concentration and light intensity on growth and photosynthesis of ginger plantlets in vitro. Chin J Appl Environ Biol 14: 356–361.

    CAS  Google Scholar 

  • Zhu C, Zeng Q, McMichael A et al (2015) Historical and experimental evidence for enhanced concentration of artemesinin, a global anti-malarial treatment, with recent and projected increases in atmospheric carbon dioxide. Clim Change 132:295–306. doi:10.1007/s10584-015-1421-3

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the National Council for Scientific and Technological Development (CNPq—Conselho Nacional de Desenvolvimento Científico e Tecnológico), the Coordination for the Improvement of Higher Education Personnel (CAPES—Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) and the Minas Gerais State Research Foundation (FAPEMIG—Fundação de Pesquisa do Estado de Minas Gerais) for the financial support (scholarships and research grants).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Eduardo Brasil Pereira Pinto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, S.T., Bertolucci, S.K.V., da Cunha, S.H.B. et al. Effect of light and natural ventilation systems on the growth parameters and carvacrol content in the in vitro cultures of Plectranthus amboinicus (Lour.) Spreng. Plant Cell Tiss Organ Cult 129, 501–510 (2017). https://doi.org/10.1007/s11240-017-1195-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-017-1195-6

Keywords

Navigation