Skip to main content
Log in

The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L.

  • Original Article
  • Published:
Plant Cell, Tissue and Organ Culture (PCTOC) Aims and scope Submit manuscript

Abstract

The role of 4.1 or 8.2 μM meta-topolin (mT) on shoot multiplication, rooting and ex vitro acclimatization of micropropagated Corylus colurna L., a promising non-suckering rootstock for hazelnut (Corylus avellana L.), was examined in comparison to N6-benzyladenine (BA), the most used cytokinin in tissue culture of Corylus spp. The influence of 8.2 μM mT and BA on photosynthetic pigments content and antioxidant enzymes activity, catalase (CAT) and guaiacol peroxidase (POD), in regenerated shoots, and on the preparation of the rootstock for micrografting was also evaluated. The highest shoot multiplication was recorded on medium containing 8.2 μM mT and an overall positive effect of mT on growth and quality of micropropagated shoots was found. The highest chlorophyll a content (1.236 mg g−1 fresh weight, FW) and chlorophyll a/b ratio (2.48), and the lowest total carotenoids content (0.292 mg g−1 FW) and CAT activity (25.8 μmol min−1 mg−1 protein) were detected after 8.2 μM mT application, while no significant differences were found in chlorophyll b content and POD activity between the two cytokinins. The best rhizogenesis response (98% for 4.1 μM and 100% for 8.2 μM mT) and ex vitro acclimatization competence (higher than 78%) were exhibited from shoots multiplied on mT. Furthermore, the multiplication of rootstock on mT allowed obtaining the highest (70%) response of successful micrografting. The present findings provide the first evidence of the successful applicability of mT in C. colurna tissue culture and development of micrografted plantlets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BA:

N6-Benzyladenine

CAT:

Catalase

CKs:

Cytokinins

CKX:

Cytokinin oxidases/dehydrogenases

DKW:

Driver and Kuniyuki Walnut

GA3 :

Gibberellic acid

POD:

Guaiacol peroxidase

IBA:

Indole-3-butyric acid

MS:

Murashige and Skoog

mT:

Meta-Topolin

NAA:

α-Naphthalene acetic acid

References

  • Aloni B, Cohen R, Karni L, Aktas H, Edelstein M (2010) Hormonal signaling in rootstock–scion interactions. Sci Hortic 127:119–126

    Article  CAS  Google Scholar 

  • Amoo SO, Van Staden J (2013) Influence of plant growth regulators on shoot proliferation and secondary metabolite production in micropropagated Huernia hystrix. Plant Cell Tiss Organ Cult 112:249–256

    Article  CAS  Google Scholar 

  • Amoo SO, Aremu AO, Moyo M, Sunmonu TO, Plíhalová L, Doležal K, Van Staden J (2015) Physiological and biochemical effects of a tetrahydropyranyl-substituted meta-topolin in micropropagated Merwilla plumbea. Plant Cell Tiss Organ Cult 121:579–590

    Article  CAS  Google Scholar 

  • Aremu AO, Bairu MW, Dolezal K, Finnie JF, Van Staden J (2012a) Topolins: a panacea to plant tissue culture challenges?. Plant Cell Tiss Organ Cult 108:1–16

  • Aremu AO, Bairu MW, Szüčová L, Finnie JF, Van Staden J (2012b) The role of meta-topolins on the photosynthetic pigment profiles and foliar structures of micropropagated ‘Williams’ bananas. J Plant Physiol 169:1530–1541

  • Bairu MW, Stirk WA, Doležal K, Van Staden J (2008) The role of topolins in micropropagation and somaclonal variation of banana cultivars ‘Williams’ and ‘Grand Naine’ (Musa spp. AAA). Plant Cell Tiss Organ Cult 95:373–379

    Article  CAS  Google Scholar 

  • Beers RF Jr, Sizer IW (1952) A spectrophotometric method for measuring the breakdown of hydrogen peroxide by catalase. J Biol Chem 195:133–140

    CAS  PubMed  Google Scholar 

  • Benson EE (2000) Do free radicals have a role in plant tissue culture recalcitrance?. In Vitro Cell Dev Biol Plant 36:163–170

    Article  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Caboni E, Frattarelli A, Giorgioni M, Meneghini M, Damiano C (2009) Improving micropropagation of hazelnut italian cultivars through temporary immersion system. Acta Hortic 845:255–260

    Article  CAS  Google Scholar 

  • Cañas L, Busscher M, Angenent G, Beltran J, Van Tunen A (1994) Nuclear localization of the petunia MADS box protein FBP1. Plant J 6:597–604

    Article  Google Scholar 

  • Cerović S, Ninić-Todorović J, Gološin B, Ognjanov V, Bijelić S (2009) Grafting methods in nursery production of hazelnut grafted on Corylus colurna L. Acta Hortic 845:279–282

    Article  Google Scholar 

  • Chakrabarty D, Park SY, Ali MB, Shin KS, Paek KY (2006) Hyperhydricity in apple: ultrastructural and physiological aspects. Tree Physiol 26:377–388

    Article  CAS  PubMed  Google Scholar 

  • Contessa C, Valentini N, Botta R (2011) Decreasing the concentration of IBA or combination with ethylene inhibitors improve bud retention in semi-hardwood cuttings of hazelnut cultivar “Tonda Gentile delle Langhe”. Sci Hortic 131:103–106

    Article  CAS  Google Scholar 

  • Cristofori V, Rouphael Y, Rugini E (2010) Collection time, cutting age, IBA and putrescine effects on root formation in Corylus avellana L. cuttings. Sci Hortic 124:189–194

    Article  CAS  Google Scholar 

  • Damiano C, Catenaro E, Giovinazzi J, Frattarelli A, Caboni E (2005) Micropropagation of hazelnut Corylus avellana L. Acta Hortic 686:221–226

    Article  CAS  Google Scholar 

  • De Pascale S, Maggio A, Fogliano V, Abrosino P, Ritieni A (2001) Irrigation with saline water improves carotenoids content and antioxidant activity of tomato. J Hortic Sci Biotech 76:447–453

    Article  Google Scholar 

  • De Oliveira LM, Paiva R, de Santana JRF, Alves E, Nogueira RC (2008) Effect of cytokinins on in vitro development of autotrophism and acclimatization of Annona glabra L. In Vitro Cell Dev Biol Plant 44:128–135

    Article  Google Scholar 

  • Della Rovere F, Fattorini L, D’Angeli S, Veloccia A, Falasca G, Altamura MM (2013) Auxin and cytokinin control formation of the quiescent centre in the adventitious root apex of arabidopsis. Ann Bot 112:1395–1407

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dobránszki J, Mendler-Drienyovszki N (2014) Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. J Plant Physiol 171:1472–1478

    Article  PubMed  Google Scholar 

  • Driver JA, Kuniyuki AH (1984) In vitro propagation of Paradox walnut rootstock. HortScience 19:507–509

    Google Scholar 

  • Druege U, Franken P, Hajirezaei MR (2016) Plant hormone homeostasis, signaling, and function during adventitious root formation in cuttings. Front Plant Sci 7:381. doi:10.3389/fpls.2016.00381

    Article  PubMed  PubMed Central  Google Scholar 

  • Ford YY, Bonham EC, Cameron RWF, Blake PS, Judd HL, Harrison-Murray RS (2001) Adventitious rooting: examining the role of auxin in an easy- and a difficult-to root plant. Plant Growth Regul 36:149–159

    Article  Google Scholar 

  • Frébort I, Kowalska M, Hluska T, Frébortová J, Galuszka P (2011) Evolution of cytokinin biosynthesis and degradation. J Exp Bot 62:2431–2452

    Article  PubMed  Google Scholar 

  • Gentile A, Jàquez Gutiérrez M, Martinez J, Frattarelli A, Nota P, Caboni E (2014) Effect of meta-topolin on micropropagation and adventitious shoot regeneration in Prunus rootstocks. Plant Cell Tiss Organ Cult 118:373–381

    Article  CAS  Google Scholar 

  • Hand C, Reed BM (2014) Minor nutrients are critical for the improved growth of Corylus avellana shoot cultures. Plant Cell Tiss Organ Cult 119:427–439

    Article  CAS  Google Scholar 

  • Hand C, Maki S, Reed BM (2014) Modeling optimal mineral nutrition for hazelnut micropropagation. Plant Cell Tiss Organ Cult 119:411–425

    Article  CAS  Google Scholar 

  • Humbeck K, Quast S, Krupinska K (1996) Functional and molecular changes in the photosynthetic apparatus during senescence of flag leaves from field-grown barley plants. Plant Cell Environ 19:337–344

    Article  CAS  Google Scholar 

  • Hussain G, Wani MS, Mir MA, Rather ZA, Bhat KM (2014) Micrografting for fruit crop improvement. Afr J Biotechnol 13:2474–2483

    Article  Google Scholar 

  • Kevers C, Franck T, Strasser RJ, Dommes J, Gaspar T (2004) Hyperhydricity of micropropagated shoots: a typically stress-induced change of physiological state. Plant Cell Tiss Organ Cult 77:181–191

    Article  Google Scholar 

  • Kosenko IS, Boyko AL, Opalko AI, Nebykov MV, Tarasenko GA (2009) Micropropagation of Corylus colurna L. Acta Hortic 845:261–266

    Article  CAS  Google Scholar 

  • Kumar K, Rao IU (2012) Morphophysiologicals problems in acclimatization of micropropagated plants in-Ex Vitro conditions-a review. J Ornam Hortic Plants 2:271–283

    CAS  Google Scholar 

  • Malá J, Máchová P, Cvrčková H, Karady M, Novák O, Mikulík J, Hauserová E, Greplová J, Strnad M, Doležal K (2009) Micropropagation of wild service tree (Sorbus torminalis [L.] Crantz): the regulative role of different aromatic cytokinins during organogenesis. J Plant Growth Regul 28:341–348

    Article  Google Scholar 

  • Mok DWS, Mok MC (2001) Cytokinin metabolism and action. Annu Rev Plant Physiol Plant Mol Biol 52:89–118

    Article  CAS  PubMed  Google Scholar 

  • Mok MC, Martin RC, Dobrev PI, Vanková R, Shing Ho P, Yonekura-Sakakibara K, Sakakibara H, Mok DWS (2005) Topolins and hydroxylated thidiazuron derivatives are substrates of cytokinin O-glucosyltransferase with position specificity related to receptor recognition. Plant Physiol 137:1057–1066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Monticelli S, Di Nicola-Negri E, Gentile A, Damiano C, Ilardi V (2012) Production and in vitro assessment of transgenic plums for resistance to Plum pox virus: a feasible, environmental risk-free, cost-effective approach. Ann Appl Biol 161:293–301

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio-assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Mutui TM, Mibus H, Serek M (2012) Effect of meta–topolin on leaf senescence and rooting in Pelargonium x hortorum cuttings. Postharvest Biol Technol 63:107–110

    Article  CAS  Google Scholar 

  • Nagata M, Yamashita I (1992) Simple method for simultaneous determination of chlorophyll and carotenoids in tomato fruit. J Japan Soc Food Sci 39:925–928

    Article  CAS  Google Scholar 

  • Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    CAS  Google Scholar 

  • Nas MN, Read PE (2004) A hypothesis for the development of a defined tissue culture medium of higher plants and micropropagation of hazelnuts. Scientia Hortic 101:189–200

    Article  CAS  Google Scholar 

  • Ribeiro LM, Nery LA, Vieira LM, Mercadante-Simões MO (2015) Histological study of micrografting in passionfruit. Plant Cell Tiss Organ Cult 123:173–181

    Article  Google Scholar 

  • Richardson FVM, Mac Ant Saoir S, Harvey BMR (1996) A study of the graft union in in vitro micrografted apple. Plant Growth Regul 20:17–23

    Article  CAS  Google Scholar 

  • Steffens B, Rasmussen A (2016) The physiology of adventitious roots. Plant Physiol 170:603–617

    Article  CAS  PubMed  Google Scholar 

  • Strnad M (1997) The aromatic cytokinins. Physiol Plant 101:674–688

    Article  CAS  Google Scholar 

  • Talla SK, Panigrahy M, Kappara S, Nirosha P, Neelamraju S, Ramanan R (2016) Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. J Exp Bot 67:1839–1851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang YL, Wen XG, Lu CM (2005) Differential changes in degradation of chlorophyll-protein complexes of photosystem I and photosystem II during flag leaf senescence of rice. Plant Physiol Biochem 43:193–201

    Article  CAS  PubMed  Google Scholar 

  • Tarkowská D, Doležal K, Tarkowski P, Ǻstot C, Holub J, Fuksová K, Schmülling T, Sandberg G, Strnad M (2003) Identification of new aromatic cytokinins in Arabidopsis thaliana and Populus x canadensis leaves by LC-(+)ESI-MS and capillary liquid chromatography/frit-fast atom bombardment mass spectrometry. Physiol Plant 117:579–590

    Article  PubMed  Google Scholar 

  • Tombesi S, Palliotti A, Poni S, Farinelli D (2015) Influence of light and shoot development stage on leaf photosynthesis and carbohydrate status during the adventitious root formation in cuttings of Corylus avellana L. Front Plant Sci 6:973. doi:10.3389/fpls.2015.00973

    Article  PubMed  PubMed Central  Google Scholar 

  • Tubić L, Savić J, Mitić N, Milojević J, Janošević D, Budimir S, Zdravkovic-Korac S (2016) Cytokinins differentially affect regeneration, plant growth and antioxidative enzymes activity in chive (Allium schoenoprasum L.). Plant Cell Tiss Organ Cult 124:1–14

    Article  Google Scholar 

  • Tulecke W, McGranahan G (1985) Somatic embryogenesis and plant regeneration from cotyledons of walnut (Juglans regia L.). Plant Sci 40:57–63

    Article  Google Scholar 

  • Ünyayar S, Keleş Y, Çekiç FÖ (2005) The antioxidative response of two species with different drought tolerances as a result of drought and cadmium stress combination. Plant Soil Environ 51:57–64

    Google Scholar 

  • Van Staden J, Zazimalova E, George EF (2008) Plant growth regulators II: cytokinins, their analogues and antagonists. In: George EF, Hall MA, De Klerk GJ (eds) Plant propagation by tissue culture. Springer, Berlin, pp 205–226

    Google Scholar 

  • Werbrouck SPO, Strnad M, Van Onckelen HA, Debergh PC (1996) Meta-topolin, an alternative to benzyladenine in tissue culture. Physiol Plant 98:291–297

    Article  CAS  Google Scholar 

  • Yu XL, Reed BM (1995) A micropropagation system for hazelnut (Corylus species). HortScience 30:120–123

    Google Scholar 

  • Zavaleta-Mancera HA, López-Delgado H, Loza-Tavera H, Mora-Herrera M, Trevilla-García C, Vargas-Suárez M, Ougham H (2007) Cytokinin promotes catalase and ascorbate peroxidase activities and preserves the chloroplast integrity during dark-senescence. J Plant Physiol 164:1572–1582

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank Elisa Catenaro for the technical assistance in in vitro C. colurna L. cultures. This work was supported by the Italian Agricultural Ministry (“VIVACO” Project).

Author contributions

AG and AF executed tissue culture experiments and collected the data. PN planned and executed the physiological analyses. ECondello executed the histological analysis. AG and EC planned the experiments, performed data analysis, wrote and edited the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Caboni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gentile, A., Frattarelli, A., Nota, P. et al. The aromatic cytokinin meta-topolin promotes in vitro propagation, shoot quality and micrografting in Corylus colurna L.. Plant Cell Tiss Organ Cult 128, 693–703 (2017). https://doi.org/10.1007/s11240-016-1150-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11240-016-1150-y

Keywords

Navigation