Skip to main content
Log in

Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Sunflower (Helianthus annuus L.) contains tocopherol, a non-enzymatic antioxidant known as lipid-soluble vitamin E, and phytosterol, with interesting properties, which can result in decreased risk of chronic diseases in humans and with several beneficial effects in plants. The genetic control of tocopherol and phytosterol content in a population of 123 recombinant inbred lines of sunflower was studied through quantitative trait loci (QTL) analysis using 190 simple sequence repeats and a gene-based linkage map. Seven experiments were conducted in different environments in France and Iran during 2007 and 2008. Each experiment consisted of three replications. Means over all environments were used for QTL mapping. Five QTL for total tocopherol content on linkage groups 1, 8, 10 and 14 accounted for 45% of phenotypic variation, whereas four QTL for total phytosterol content on linkage groups 1, 2, 16 and 17 explained 27% of the phenotypic variation. GST, PAT2, SFH3 and POD genes showed co-localization with QTL for total phytosterol content. SMT2 is also mapped on linkage group 17 near the QTL of total phytosterol content. Four candidate genes, VTE4, HPPD, GST and Droug1, exhibited co-localization with QTL for total tocopherol content. The candidate genes associated with tocopherol and phytosterol, especially HPPD, VTE4 and SMT2, could be used for alternation of the tocopherol and phytosterol content of sunflower seeds through the development of functional markers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

RIL:

Recombinant inbred line

SSR:

Simple sequence repeat

CG:

Candidate gene

SNP:

Single nucleotide polymorphism

CAPS:

Cleaved amplified polymorphic sequence

InDel:

Insertion/deletion

HRM:

High-resolution melting

NIRS:

Near-infrared reflectance spectrometry

HPLC:

High-performance liquid chromatography

TTC:

Total tocopherol content

TPC:

Total phytosterol content

CIM:

Composite interval mapping

QTL:

Quantitative trait locus/loci

RFLP:

Restriction fragment length polymorphism

AFLP:

Amplified fragment length polymorphism

LG:

Linkage group

References

  • Alignan M, Roche J, Vear F, Vincourt P, Bouniols A, Cerny M, Mouloungui Z, and Merah O (2008) Variability and genetic analysis of sterols content in sunflower seeds, Internat. Sunflower conference, Cordoba

  • Amar S, Ecke W, Becker H, Möllers C (2008) QTL for phytosterol and sinapate ester content in Brassica napus L. collocate with the two erucic acid genes. Theor Appl Genet 116:1051–1061

    Article  PubMed  CAS  Google Scholar 

  • Ayerdi Gotor A, Berger M, Labalette F, Centis S, Daydé J, Calmon A (2008) Near infrared spectrometry (NIRS) prediction of minor components in sunflower seeds. In: Proceedings of 17th international sunflower conference, vol 2. Córdoba, Spain, 8–12 June 2008, pp 763–769

  • Bachlava E, Dewey RE, Auclair J, Wang S, Burton JW, Cardinal AJ (2008) Mapping genes encoding microsomal ω-6 desaturase enzymes and their cosegregation with QTL affecting oleate content in soybean. Crop Sci 48:640–650

    Article  CAS  Google Scholar 

  • Beavis WD (1994) The power and deceit of QTL experiments: Lessons from comparative QTL studies. In: Wilkinson DB (ed) Annual corn and sorghum research conference, 49th, Chicago, IL. American Seed Trade Association, Alexandria, VA, pp 250–266

  • Berry ST, Leon AJ, Hanfrey CC, Challis P, Burkolz A, Barnes SR, Rufener GK, Lee M, Caligari PDS (1995) Molecular-marker analysis of Helianthus annuus L. 2. Construction of an RFLP map for cultivated sunflower. Theor Appl Genet 91:195–199

    Article  CAS  Google Scholar 

  • Bouic PJD (2001) The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care 4:471–475

    Article  PubMed  CAS  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner KH (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Cela J, Falk J, Munné-Bosch S (2009) Ethylene signaling may be involved in the regulation of tocopherol biosynthesis in Arabidopsis thaliana. FEBS Lett 583:992–996

    Article  PubMed  CAS  Google Scholar 

  • Chander S, Guo YQ, Yang XH, Yan JB, Zhang YR, Song TM, Li JS (2008) Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breed 22:353–365

    Article  CAS  Google Scholar 

  • Clouse SD (2000) Plant development: a role for sterols in embryogenesis. Curr Biol 10:R601–R604

    Article  PubMed  CAS  Google Scholar 

  • Demurin Y (1993) Genetic variability of tocopherol composition in sunflower seeds. Helia 16:59–62

    Google Scholar 

  • Ebrahimi A, Maury P, Berger M, Poormohammad Kiani S, Nabipour A, Shariati F, Grieu P, Sarrafi A (2008) QTL mapping of seed-quality traits in sunflower recombinant inbred lines under different water regimes. Genome 51:599–615

    Article  PubMed  CAS  Google Scholar 

  • Ebrahimi A, Maury P, Berger M, Calmon A, Grieu P, Sarrafi A (2009) QTL mapping of protein content and seed characteristics under water-stress conditions in sunflower. Genome 52:419–430

    Article  PubMed  CAS  Google Scholar 

  • Endrigkeit J, Wang X, Cai D, Zhang C, Long Y, Meng J, Jung C (2009) Genetic mapping, cloning, and functional characterization of the BnaX.VTE4 gene encoding a gamma-tocopherol methyltransferase from oilseed rape. Theor Appl Genet 119:567–575

    Article  PubMed  CAS  Google Scholar 

  • Flores Berrios E, Gentzbittel L, Kayyal N, Alibert G, Sarrafi A (2000) AFLP mapping of QTLs for in vitro organogenesis traits using recombinant inbred lines in sunflower (Helianthus annuus L.). Theor Appl Genet 101:1299–1306

    Article  Google Scholar 

  • Gedil MA, Berry SK, Jones R, Leon A, Wye C, Peleman J, Knapp SJ (2001) An integrated RFLP-AFLP linkage map for cultivated sunflower. Genome 44:213–221

    Article  PubMed  CAS  Google Scholar 

  • Gentzbittel L, Vear F, Zhang Y, Bervillé A, Nicolas P (1995) Development of a consensus linkage RFLP map of cultivated sunflower (Helianthus annuus L.). Theor Appl Genet 90:1079–1086

    Article  CAS  Google Scholar 

  • Gentzbittel L, Mestries E, Mouzeyar S, Mazeyrat F, Badaoui S, Vear F, Tourvieille de Labrouhe D, Nicolas P (1999) A composite map of expressed sequences and phenotypic traits of the sunflower (Helianthus annuus L.) genome. Theor Appl Genet 99:218–234

    Article  CAS  Google Scholar 

  • Gilliland LU, Magallanes-Lundback M, Hemming C et al (2006) Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. Proc Natl Acad Sci USA 103:18834–18841

    Article  PubMed  CAS  Google Scholar 

  • Hass CG, Tang S, Leonard S, Traber M, Miller JF, Knapp SJ (2006) Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782

    Article  PubMed  CAS  Google Scholar 

  • Jan CC, Vick BA, Miller JF, Kahler AL, Butler ET (1998) Construction of an RFLP linkage map for cultivated sunflower. Theor Appl Genet 96:15–22

    Article  CAS  Google Scholar 

  • Kamal-Eldin A, Andersson R (1997) A multivariate study of the correlation between tocopherol content and fatty acid composition in vegetable oils. J Am Oil Chem Soc 74:375–380

    Article  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Lindsey K, Pullen ML, Topping JF (2003) Importance of plant sterols in pattern formation and hormone signalling. Trends Plant Sci 8:1360–1385

    Article  Google Scholar 

  • Marwede V, Gul MK, Becker HC, Ecke W (2005) Mapping of QTL controlling tocopherol content in winter oilseed rape. Plant Breed 124:20–26

    Article  CAS  Google Scholar 

  • Mouloungui Z, Roche J, Bouniols A (2006) Limitations extractives des ingrédients fonctionnels natifs: lipides bioactifs par modifications chimiques, Oléagineux. Corps gras Lipides 13:16–22

    CAS  Google Scholar 

  • Munné-Bosch S (2005) The role of alpha-tocopherol in plant stress tolerance. J Plant Physiol 162:743–748

    Article  PubMed  Google Scholar 

  • Munné-Bosch S, Falk J (2004) New insights into the function of tocopherols in plants. Planta 218:323–326

    Article  PubMed  Google Scholar 

  • Norris SR, Shen X, Della Penna D (1998) Complementation of the Arabidopsis pds1 mutation with the gene encoding p-hydroxyphenylpyruvate dioxygenase. Plant Physiol 117:1317–1323

    Article  PubMed  CAS  Google Scholar 

  • Norris SR, Lincoln K, Abad MS, Eilers R, Hartsuyker KK, Hirschberg J, Karunanandaa B, Moshiri F, Stein J, Valentin HE and Venkatesh TV (2004) Tocopherol biosynthesis related genes and uses thereof. United States patent 7230165

  • Ostlund RE (2002) Phytosterols in human nutrition. Annu Rev Nutr 22:533–549

    Article  PubMed  CAS  Google Scholar 

  • Poormohammad Kiani S, Talia P, Maury P, Grieu P, Heinz R, Perrault A, Nishinakamasu V, Hopp E, Gentzbittel L, Paniego N, Sarrafi A (2007) Genetic analysis of plant water status and osmotic adjustment in recombinant inbred lines of sunflower under two water treatments. Plant Sci 172:773–787

    Article  Google Scholar 

  • Poormohammad Kiani S, Maury P, Nouri L, Ykhlef N, Grieu P, Sarrafi A (2009) QTL analysis of yield-related traits in sunflower under different water treatments. Plant Breed 128:363–373

    Article  Google Scholar 

  • Porebski S, Bailey L, Baum B (1997) Modification of a CTAB DNA extraction protocol for plants containing high polysaccharide and polyphenol components. Plant Mol Biol Rep 15:8–15

    Article  CAS  Google Scholar 

  • Rachid Al-Chaarani G, Gentzbittel L, Huang X, Sarrafi A (2004) Genotypic variation and identification of QTLs for agronomic traits using AFLP and SSR in recombinant inbred lines of sunflower (Helianthus annuus L.). Theor Appl Genet 109:1353–1360

    Article  PubMed  Google Scholar 

  • Saito K, Tautz L, Mustelin T (2007) The lipid-binding SEC14 domain. Biochim Biophys Acta 1771:719–726

    PubMed  CAS  Google Scholar 

  • SAS Institute Inc. (1996) SAS/STAT user’s guide, version 6, vols 1 and 2, 4th edn., SAS Institute Inc., Cary, NC

  • Schaller H (2003) The role of sterols in plant growth and development. Prog Lipid Res 42:163–175

    Article  PubMed  CAS  Google Scholar 

  • Schaller H (2004) New aspects of sterol biosynthesis in growth and development of higher plants. Plant Physiol Biochem 42:465–476

    Article  PubMed  CAS  Google Scholar 

  • Schiex T, Gaspin C (1997) CARTHAGENE, construction and joining maximum likelihood genetic maps. In: Proceedings of ISMB, vol 5. Porto Carras, Halkidiki, Greece, pp 258–267

  • Semchuk NM, Lushchak OV, Falk J, Krupinska K, Lushchak VI (2009) Inactivation of genes, encoding tocopherol biosynthetic pathway enzymes, results in oxidative stress in outdoor grown Arabidopsis thaliana. Plant Physiol Biochem 47:384–390

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, Dellapenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Kishor VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide frame work of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    PubMed  CAS  Google Scholar 

  • Tang S, Hass CG, Knapp SJ (2006) Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paralogous mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113:767–782

    Article  PubMed  Google Scholar 

  • Trebst A, Depka B, Holländer-Czytko H (2002) A specific role for tocopherol and of chemical singlet oxygen quenchers in the maintenance of photosystem II structure and function in Chlamydomonas reinhardtii. FEBS Lett 516:156–160

    Article  PubMed  CAS  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F, Jensen PK, Qi Q, Venkatesh TV, Karunanandaa B, Baszis SR, Norris SR, Savidge B, Gruys KJ, Last RL (2006) The Arabidopsis vitamin E pathway gene5–1 mutant reveals a critical role for phytol kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  PubMed  CAS  Google Scholar 

  • Van Rensburget SJ, Daniels WM, Van Zyl JM, Taljjard JJ (2000) A comparative study of the effects of cholesterol, beta-sitosterol, beta-sitosterol glucoside, dehydroepiandrosterone, sulphate and melatonin on in vitro lipid peroxidation. Metab Brain Dis 15:257–265

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2004) Development of sunflower germplasm with high delta-tocopherol content. Helia 27:99–106

    Article  Google Scholar 

  • Vera-Ruiz E, Velasco L, Leon A, Fernández-Martínez J, Pérez-Vich B (2006) Genetic mapping of the Tph1 gene controlling beta-tocopherol accumulation in sunflower seeds. Mol Breed 17:291–296

    Article  CAS  Google Scholar 

  • Wang S, Basten CJ, and Zeng ZB (2005) Windows QTL cartographer V2.5. Department of Statistics, North Carolina State University, Raleigh, N.C. Available from http://statgen.ncsu.edu/qtlcart/WQTLCart.htm

  • Wong JC, Lambert RJ, Tadmor Y, Rocheford TR (2003) QTL associated with accumulation of tocopherols in maize. Crop Sci 43:2257–2266

    Article  CAS  Google Scholar 

  • Wu R, Casella G, Ma C (2007) Statistical genetics of quantitative traits. Linkage, maps, and QTL. Springer, New York, pp 287–302

    Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Sarrafi.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 502 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haddadi, P., Ebrahimi, A., Langlade, N.B. et al. Genetic dissection of tocopherol and phytosterol in recombinant inbred lines of sunflower through quantitative trait locus analysis and the candidate gene approach. Mol Breeding 29, 717–729 (2012). https://doi.org/10.1007/s11032-011-9585-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-011-9585-7

Keywords

Navigation