Skip to main content
Log in

Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wildtype sunflower (Helianthus annuus L.) seeds are a rich source of α-tocopherol (vitamin E). The g = Tph 2 mutation disrupts the synthesis of α-tocopherol, enhances the synthesis of γ-tocopherol, and was predicted to knock out a γ-tocopherol methyltransferase (γ-TMT) necessary for the synthesis of α-tocopherol in sunflower seeds—wildtype (g + g +) lines accumulated > 90% α-tocopherol, whereas mutant (g g) lines accumulated > 90% γ-tocopherol. We identified and isolated two γ-TMT paralogs (γ-TMT-1 and γ-TMT-2). Both mapped to linkage group 8, cosegregated with the g locus, and were transcribed in developing seeds of wildtype lines. The g mutation greatly decreased γ-TMT-1 transcription, caused alternative splicing of γ-TMT-1, disrupted γ-TMT-2 transcription, and knocked out one of two transcription initiation sites identified in the wildtype; γ-TMT transcription was 36 to 51-fold greater in developing seeds of wildtype (g + g +) than mutant (g g) lines. F2 populations (B109 × LG24 and R112 × LG24) developed for mapping the g locus segregated for a previously unidentified locus (d). B109, R112, and LG24 were homozygous for a null mutation (m = Tph 1) in MT-1, one of two 2-methyl-6-phytyl-1,4-benzoquinone/2-methyl-6-solanyl-1,4-benzoquinone methyltransferase (MPBQ/MSBQ-MT) paralogs identified in sunflower. The d mutations segregating in B109 × LG24 and R112 × LG24 were allelic to a cryptic mutation identified in the other MPBQ/MSBQ-MT paralog (MT-2) and disrupted the synthesis of α- and γ-tocopherol in F2 progeny carrying m or g mutations—m m g + g + d d homozygotes accumulated 41.5% α- and 58.5% β-T, whereas m m g g d d homozygotes accumulated 58.1% γ- and 41.9% δ-T. MT-2 cosegregated with d and mapped to linkage group 4. Hence, novel tocopherol profiles are produced in sunflower seed oil by three non-allelic epistatically interacting methyltransferase mutations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Bennetzen JL (2000) Transposable element contributions to plant gene and genome evolution. Plant Mol Biol 42:251–269

    Article  PubMed  CAS  Google Scholar 

  • Bergmüller E, Porfirova S, Dörmann P (2003) Characterization of an Arabidopsis mutant deficient in γ-tocopherol methyltransferase. Plant Mol Biol 52:1181–1190

    Article  PubMed  Google Scholar 

  • Bramley PM, Elmadfa I, Kafatos A, Kelly FJ, Manios Y, Roxborough HE, Schuch W, Sheehy PJA, Wagner K-H (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  CAS  Google Scholar 

  • Brown JWS (1996) Arabidopsis intron mutations and pre-mRNA splicing. Plant J 10:771–780

    Article  PubMed  CAS  Google Scholar 

  • Burton GW, Webb A, Ingold KU (1985) A mild, rapid, and efficient method of lipid extraction for use in determining vitamin E/lipid ratios. Lipids 20:29–39

    Article  PubMed  CAS  Google Scholar 

  • Cahoon EB, Hall SE, Ripp KG, Ganzke TS, Hitz WD, Coughlan SJ (2003) Metabolic redesign of vitamin E biosynthesis in plants for tocotrienol production and increased antioxidant content. Nat Biotech 21:1082–1087

    Article  CAS  Google Scholar 

  • Cheng Z, Sattler S, Maeda H, Sakuragi Y, Bryant DA, DellaPenna D (2003) Highly divergent methyltransferases catalyze a conserved reaction in tocopherol and plastoquinone synthesis in cyanobacteria and photosynthetic eukaryotes. Plant Cell 15:2343–2356

    Article  PubMed  CAS  Google Scholar 

  • Christen S, Woodall AA, Shigenaga MK, Southwell-Keely PT, Duncan MW, Ames BN (1997) Gamma-tocopherol traps mutagenic electrophiles such as NO(X) and complements alpha-tocopherol: physiological implications. Proc Natl Acad Sci USA 94:3217–3222

    Article  PubMed  CAS  Google Scholar 

  • Cook W, Miles D (1992) Nuclear mutations affecting plastoquinone accumulation in maize. Photosynth Res 31:99–111

    Article  CAS  Google Scholar 

  • Cui X, Hsiac AP, Liu F, Ashlockd DA, Wise RP, Schnable PS (2003) Alternative transcription initiation sites and polyadenylation sites are recruited during Mu suppression at the rf2a locus of maize. Genetics 163:685–698

    PubMed  CAS  Google Scholar 

  • Demurin Y (1993) Genetic variability of tocopherol composition in sunflower seeds. Helia 16:59–62

    Google Scholar 

  • Demurin Y, Skoric D, Karlovic D (1996) Genetic variability of tocopherol composition in sunflower seeds as a basis of breeding for improved oil quality. Plant Breed 115:33–36

    Article  CAS  Google Scholar 

  • Devaraj S, Traber MG (2003) Gamma-tocopherol, the new vitamin E? Am J Clin Nutr 77:530–531

    PubMed  CAS  Google Scholar 

  • Dolde D, Vlahakis C, Hazebroek J (1999) Tocopherols in breeding lines and effects of plant location, fatty acid composition, and temperature during development. J Am Oil Chem Soc 76:349–355

    Article  CAS  Google Scholar 

  • Eitenmiller RR (1997) Vitamin E content of fats and oils: nutritional implications. Food Technol 51:78–81

    CAS  Google Scholar 

  • Falconer DS, Mackay TF (1996) Introduction to quantitative genetics. Longman, Harlow

    Google Scholar 

  • Feschotte C, Jiang N, Wessler SR (2002) Plant transposable elements: where genetics meets genomics. Nat Rev Genet 3:329–341

    Article  PubMed  CAS  Google Scholar 

  • Greco R, Ouwerkerk PBF, Pereira A (2005) Supperession of an atypically spliced rice CACTA transposon transcript in transgenic plants. Genetics 169:2383–2387

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  PubMed  CAS  Google Scholar 

  • Hass CG, Leonard SW, Miller JF, Slabaugh MB, Traber MG, Knapp SJ (2003) Genetics of tocopherol (Vitamin E) composition mutants in sunflower. In: Abstract of plant and animal genome conference XI, San Diego, CA, USA,11–15 January 2003. http://www.intl-pagorg/11/abstracts/P7b_P821_XI.html

  • Havaux M, Eymery F, Porfirova S, Rey P, Dormann P (2005) Vitamin E protects against photoinhibition and photooxidative stress in Arabidopsis thaliana. Plant Cell 17:3451–3469

    Article  PubMed  CAS  Google Scholar 

  • Hensley K, Benaksas EJ, Bolli R, Comp P, Grammas P, Hamdheydari L, Mou S, Pye QN, Stoddard MF, Wallis G, Williamson KS, West M, Wechter WJ, Floyd RA (2004) New perspectives on vitamin E: gamma-tocopherol and carboxyelthylhydroxychroman metabolites in biology and medicine. Free Radic Biol Med 36:1–15

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Elson-Schwab I, Courtemanche C, Ames BN (2000) Gamma-tocopherol and its major metabolite, in contrast to alpha-tocopherol, inhibit cyclooxygenase activity in macrophages and epithelial cells. Proc Natl Acad Sci USA 97:11494–11499

    Article  PubMed  CAS  Google Scholar 

  • Johns MA, Mottinger J, Freeling M (1985) A low copy number, copia-like transposon in maize. EMBO J 4:1093–1102

    PubMed  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Kanwischer M, Porfirova S, Bergmüller E, Dormann P (2005) Alterations in tocopherol cyclase activity in transgenic and mutant plants of Arabidopsis affect tocopherol content, tocopherol composition, and oxidative stress. Plant Physiol 137:713–723

    Article  PubMed  CAS  Google Scholar 

  • Kolkman JM, Slabaugh MB, Bruniard JM, Berry S, Bushman BS, Olungu C, Maes N, Abratti G, Zambelli A, Miller JF, Leon A, Knapp SJ (2004) Acetohydroxyacid synthase mutations conferring resistance to imidazolinone or sulfonylurea herbicides in sunflower. Theor Appl Genet 109:1147–1159

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Choi J-H, Shaw JR, Hannah LC (1999) A splice site mutant of maize activates cryptic splice sites, elicits intron inclusion and exon exclusion, and permits branch point elucidation. Plant Physiol 121:411–418

    Article  PubMed  CAS  Google Scholar 

  • Lal SK, Giroux MJ, Brendel V, Vallejos CE, Hannah LC (2003) The maize genome contains a helitron insertion. Plant Cell 15:381–391

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Lynch M, Walsh B (1998) Genetics and analysis of quantitative traits. Sinauer, Sunderland

    Google Scholar 

  • Marillonnet S, Wessler SR (1997) Retrotransposon insertion into the maize waxy gene results in tissue-specific RNA processing. Plant Cell 9:967–978

    Article  PubMed  CAS  Google Scholar 

  • Michelmore RW, Paran I, Kesseli V (1991) Identification of markers linked to disease resistance genes by bulked segregant analysis: a rapid method to detect markers in specific genomic regions by using segregating populations. Proc Natl Acad Sci USA 88:9828–9832

    Article  PubMed  CAS  Google Scholar 

  • Miller JF, Vick BA (2001) Registration of four high linoleic sunflower germplasms. Crop Sci 41:602

    Article  Google Scholar 

  • Miller JF, Zimmerman DC, Vick BA, Roath WW (1987) Registration of sixteen high oleic sunflower germplasm lines and bulk populations. Crop Sci 27:1323

    Article  Google Scholar 

  • Murray MG, Thompson WR (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Ohrvall M, Sundlof G, Vessby B (1996) Gamma, but not alpha, tocopherol levels in serum are reduced in coronary heart disease patients. J Intern Med 239:111–117

    Article  PubMed  CAS  Google Scholar 

  • Pfluger P, Kluth D, Landes N, Bumke-Vogt C, Brigelius-Flohe R (2004) Vitamin E: underestimated as an antioxidant. Redox Rep 9:249–254

    Article  PubMed  CAS  Google Scholar 

  • Podda M, Weber C, Traber MG, Packer L (1996) Simultaneous determination of tissue tocopherols, tocotrienols, ubiquinols, and ubiquinones. J Lipid Res 37:893–901

    PubMed  CAS  Google Scholar 

  • Porfirova S, Bergmüller E, Tropf S, Lemke R, Dormann P (2002) Isolation of an Arabidopsis mutant lacking vitamin E and identification of a cyclase essential for all tocopherol biosynthesis. Proc Natl Acad Sci USA 99:12495–12500

    Article  PubMed  CAS  Google Scholar 

  • Roath WW, Miller JF, Gulya T (1986) Registration of sunflower parental lines HA 821 and HA 822. Crop Sci 26:217

    Article  Google Scholar 

  • Rocheford TR, Wong JC, Egesel CO, Lambert RJ (2002) Enhancement of vitamin E levels in corn. J Am Coll Nutr 21:191S–198S

    PubMed  CAS  Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ, DellaPenna D (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria: evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    Article  PubMed  CAS  Google Scholar 

  • Sattler SE, Gillilanda LU, Magallanes-Lundbacka M, Pollard M, DellaPenna D (2004) Vitamin E is essential for seed longevity and for preventing lipid peroxidation during germination. Plant Cell 16:1419–1432

    Article  PubMed  CAS  Google Scholar 

  • Selinger DA, Chandler VL (2001) B-Bolivin, an allele of the maize b1 gene with variable expression, contains a high copy retrotransposon-related sequence immediately upstream. Plant Physiol 125:1363–1379

    Article  PubMed  CAS  Google Scholar 

  • Sheppard AJ, Pennington JAT, Weihrauch JL (1993) Analysis and distribution of vitamin E in vegetable oils and foods. In: Packer L, Fuch J (eds) Vitamin E in health and disease. Marcel Dekker, New York, pp 9–31

    Google Scholar 

  • Shintani DK, DellaPenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Shintani DK, Cheng Z, DellaPenna D (2002) The role of 2-methyl-6-phytylbenzoquinone methyltransferase in determining tocopherol composition in Synechocystis sp. PCC6803. FEBS Lett 511:1–5

    Article  PubMed  CAS  Google Scholar 

  • Sokal RR, Rohlf FJ (1981) Biometry: the principles and practice of statistics in biological research. 2nd edn. WH Freeman, San Francisco, pp 1–859

    Google Scholar 

  • Tang S, Yu JK, Slabaugh MB, Shintani DK, Knapp SJ (2002) Simple sequence repeat map of the sunflower genome. Theor Appl Genet 105:1124–1136

    Article  PubMed  CAS  Google Scholar 

  • Tang S, Kishore VK, Knapp SJ (2003) PCR-multiplexes for a genome-wide framework of simple sequence repeat marker loci in cultivated sunflower. Theor Appl Genet 107:6–19

    PubMed  CAS  Google Scholar 

  • Tang S, Hass CG, Knapp SJ (2005) Candidate genes for mutations causing changes in tocopherol composition in sunflower. In: Abstract of plant and animal genome conference XIII, San Diego, CA, USA, 15–19 January 2005. http://www.intl-pag.org/13/abstracts/PAG13_W071.html

  • Tang S, Hass CG, Knapp SJ (2006) Ty3/gypsy-like retrotransposon knockout of a 2-methyl-6-phytyl-1,4-benzoquinone methyltransferase is non-lethal, uncovers a cryptic paraologus mutation, and produces novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet (in press)

  • Traber MG (2004a) The ABCs of vitamin E and beta-carotene absorption. Am J Clin Nutr 80:3–4

    CAS  Google Scholar 

  • Traber MG (2004b) Vitamin E, nuclear receptors and xenobiotic metabolism. Arch Biochem Biophys 423:6–11

    Article  CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin E in humans: demand and delivery. Annu Rev Nutr 16:321–347

    Article  PubMed  CAS  Google Scholar 

  • Van Eenennaam AL, Lincoln K, Durrett TP, Valentin HE, Shewmaker CK, Thorne GM, Jiang J, Baszis SR, Levering CK, Aasen ED, Hao M, Stein JC, Norris SR, Last RL (2003) Engineering vitamin E content: from Arabidopsis mutant to soy oil. Plant Cell 15:3007–3019

    Article  PubMed  CAS  Google Scholar 

  • Varagona MJ, Purugganan M, Wessler SR (1992) Alternative splicing induced by insertion of retrotransposons into the maize waxy gene. Plant Cell 4:811–820

    Article  PubMed  CAS  Google Scholar 

  • Velasco L, Domínguez J, Fernández-Martínez JM (2004a) Registration of T589 and T2100 sunflower germplasms with modified tocopherol profiles. Crop Sci 44:362–363

    Article  Google Scholar 

  • Velasco L, Pérez-Vich B, Fernández-Martínez JM (2004b) Novel variation for the tocopherol profile in a sunflower created by mutagenesis and recombination. Plant Breed 123:490–492

    Article  CAS  Google Scholar 

  • Wagner KH, Kamal-Eldin A, Elmadfa I (2004) Gamma-tocopherol—an underestimated vitamin? Ann Nutr Metab 48:169–188

    Article  PubMed  CAS  Google Scholar 

  • Weil CF, Marillonnet S, Burr B, Wessler SR (1992) Changes in state of the Wx-m5 allele of maize are due to intragenic transposition of Ds. Genetics 130:75–85

    Google Scholar 

  • Wong JC, Lambert RT, Tadmor Y, Rocheford TR (2003) QTL associated with accumulation of tocopherols in maize. Crop Sci 43:2257–2266

    Article  CAS  Google Scholar 

  • Yu JK, Tang S, Slabaugh MB, Heesacker A, Cole G, Herring M, Soper J, Han F, Chu WC, Webb DM, Thompson L, Edwards KJ, Berry S, Leon AJ, Olungu C, Maes N, Knapp SJ (2003) Towards a saturated molecular genetic linkage map for cultivated sunflower. Crop Sci 43:367–387

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by funding to S.J.K. from the National Research Initiative of the United States Department of Agriculture Cooperative State Research, Education, and Extension Service Plant Genome Program (Grant No. 2003-35300-15184), the Paul C. Berger Endowment at Oregon State University, the Georgia Research Alliance, and the University of Georgia Research Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven J. Knapp.

Additional information

Communicated by C. Gebhardt

Catherine G. Hass and Shunxue Tang contributed equally to this work.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hass, C.G., Tang, S., Leonard, S. et al. Three non-allelic epistatically interacting methyltransferase mutations produce novel tocopherol (vitamin E) profiles in sunflower. Theor Appl Genet 113, 767–782 (2006). https://doi.org/10.1007/s00122-006-0320-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0320-4

Keywords

Navigation