Skip to main content
Log in

Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach

  • Published:
Molecular Breeding Aims and scope Submit manuscript

Abstract

Tocopherols are essential micronutrients for humans and animals, with several beneficial effects in plants. Among cereals, only maize grains contain high concentrations of tocopherols. In this investigation we analyzed, during 2004 and 2005, by high-performance liquid chromatography (HPLC), a population of 233 recombinant inbred lines (RIL) which were derived from two diverse parents and had extremely variable tocopherol content and composition. A genetic map was constructed using 208 polymorphic molecular markers including gene-targeted markers based on six candidate genes of the tocopherol biosynthesis pathway (HPPD, VTE1, VTE3, VTE4, P3VTE5, and P4VTE5). Thirty-one quantitative trait loci (QTL) associated with quantitative variation of tocopherol content and composition were identified by composite interval mapping (CIM); these were located on sixteen genomic regions covering all the chromosomes except chromosome 4. Most (65%) QTL were co-located, suggesting that in some cases the same QTL predominantly affected the amounts of more than one tocopherol. Two candidate genes, HPPD and VTE4 showed co-localization with major QTL for tocopherol content and composition whereas only one interval (umc1075–umc1304) on chromosome eight exhibited a QTL for α, δ, γ, and total tocopherols with high LOD and PVE values. The candidate genes associated with tocopherol content and with composition, especially VTE4 and HPPD, could be precisely used for alteration of the tocopherol content and composition of maize grains by development of functional markers. Other identified major QTL especially those on chromosomes 8, 1, and 2 (near candidate gene VTE5) can also be used for improvement of maize grain quality by marker-assisted selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

PUFA:

Polyunsaturated fatty acids

VED:

Vitamin E deficiency

RIL:

Recombinant inbred line

MAS:

Marker-assisted selection

HPLC:

High-performance liquid chromatography

QTL:

Quantitative trait loci

References

  • Bramley PM, Elmadfa I, Kafatos A et al (2000) Vitamin E. J Sci Food Agric 80:913–938

    Article  CAS  Google Scholar 

  • Brigelius-Flohe R, Traber MG (1999) Vitamin E: function and metabolism. FASEB J 13:1145–1155

    PubMed  CAS  Google Scholar 

  • Buckley DJ, Morrissey PA, Gray JI (1995) Influence of dietary vitamin E on the oxidative stability and quality of pig meat. J Anim Sci 73:3122–3130

    PubMed  CAS  Google Scholar 

  • By Patrick AM, Buckley DJ, Sheehy PJA et al (1994) Vitamin E and meat quality. Proc Nutr Soc 53:289–295

    Article  Google Scholar 

  • Chander S, Guo YQ, Yang XH et al (2008) Using molecular markers to identify two major loci controlling carotenoid contents in maize grain. Theor Appl Genet 116:223–234

    Article  PubMed  CAS  Google Scholar 

  • Chow CK (2004) Biological function and metabolic fate of vitamin E revisited. J Biomed Sci 11:295–302

    Article  PubMed  CAS  Google Scholar 

  • Collakova E, DellaPenna D (2003) Homogentisate phytyltransferase activity is limiting for tocopherol biosynthesis in Arabidopsis. Plant Physiol 131:632–642

    Article  PubMed  CAS  Google Scholar 

  • Cook WB, Miles D (1992) Nuclear mutations affecting plastoquinone accumulation in maize. Photosynthesis Res 31:99–111

    Article  CAS  Google Scholar 

  • Dewinne A, Dirinck P (1996) Studies on vitamin E and meat quality. 2. Effect of feeding high vitamin E levels on chicken meat quality. J Agric Food Chem 44:1691–1696

    Article  CAS  Google Scholar 

  • Egesel CO, Wong JC, Lambert RJ et al (2003) Combining ability of maize inbreds for carotenoids and tocopherols. Crop Sci 43:818–823

    CAS  Google Scholar 

  • Eggermont E (2006) Recent advances in vitamin E metabolism and deficiency. Eur J Pediatr 165:429–434

    Article  PubMed  CAS  Google Scholar 

  • Fielding JL, Goldsworthy A (1980) Tocopherol levels and ageing in wheat grains. Ann Bot 46:453–456

    CAS  Google Scholar 

  • Galliher HL, Alexander DE, Weber EJ (1985) Genetic variability of alpha-tocopherol and gamma-tocopherol in corn embryos. Crop Sci 25:547–549

    Google Scholar 

  • Gilliland LU, Magallanes-Lundback M, Hemming C et al (2006) Genetic basis for natural variation in seed vitamin E levels in Arabidopsis thaliana. PNAS 103:18834–18841

    Article  PubMed  CAS  Google Scholar 

  • Goffman FD, Böhme T (2001) Relationship between fatty acid profile and vitamin E content in maize hybrids (Zea mays L.). J Agric Food Chem 49:4990–4994

    Article  PubMed  CAS  Google Scholar 

  • Grams GW, Blessin CW, Inglett GE (1970) Distribution of tocopherols within the corn kernel. J Am Oil Chem Soc 47:337–339

    Article  PubMed  CAS  Google Scholar 

  • Grusak MA, DellaPenna D (1999) Improving the nutrient composition of plants to enhance human nutrition and health. Annu Rev Plant Physiol Plant Mol Biol 50:133–161

    Article  PubMed  CAS  Google Scholar 

  • Gupta PK, Rustgi S (2004) Molecular markers from the transcribed/expressed region of the genome in higher plants. Funct Integr Genomics 4:139–162

    Article  PubMed  CAS  Google Scholar 

  • Kamal-Eldin A, Appelqvist LA (1996) The chemistry and antioxidant properties of tocopherols and tocotrienols. Lipids 31:671–701

    Article  PubMed  CAS  Google Scholar 

  • Knapp SJ, Stroup WW, Ross WM (1985) Exact confidence intervals for heritability on a progeny mean basis. Crop Sci 25:192–194

    Google Scholar 

  • Kulwal PL, Kumar N, Gaur A et al (2005) Mapping of a major QTL for pre-harvest sprouting tolerance on chromosome 3A in bread wheat. Theor Appl Genet 111:1052–1059

    Article  PubMed  CAS  Google Scholar 

  • Kurilich AC, Juvik JA (1999) Quantification of carotenoids and tocopherol antioxidants in Zea mays. J Agric Food Chem 47:1948–1955

    Article  PubMed  CAS  Google Scholar 

  • Lübberstedt T, Zein I, Andersen JR et al (2005) Development and application of functional markers in maize. Euphytica 146:101–108

    Article  CAS  Google Scholar 

  • Phelps TL, Hall AE, Buckner B (1996) Microsatellite repeat variation within the y1 gene of maize and teosinte. J Hered 87:396–399

    PubMed  CAS  Google Scholar 

  • Provencher LM, Miao L, Sinha N et al (2001) Sucrose export defective 1 encodes a novel protein implicated in chloroplast-to-nucleus signaling. Plant Cell 13:1127–1141

    Article  PubMed  CAS  Google Scholar 

  • Remington DL, Thornsberry JM, Matsuoka Y et al (2001) Structure of linkage disequilibrium and phenotypic associations in the maize genome. PNAS 98:11479–11484

    Article  PubMed  CAS  Google Scholar 

  • Rocheford TR, Wong JC, Egesel CO et al (2002) Enhancement of vitamin E levels in corn. J Am Coll Nutr 21:191S–198S

    PubMed  CAS  Google Scholar 

  • Sattler SE, Cahoon EB, Coughlan SJ et al (2003) Characterization of tocopherol cyclases from higher plants and cyanobacteria. Evolutionary implications for tocopherol synthesis and function. Plant Physiol 132:2184–2195

    Article  PubMed  CAS  Google Scholar 

  • Schwarz K, Bertelsen G, Nissen LR et al (2001) Investigation of plant extracts for the protection of processed foods against lipid oxidation. Comparison of antioxidant assays based on radical scavenging, lipid oxidation and analysis of the principal antioxidant compounds. Eur Food Res Technol 212:319–328

    Article  CAS  Google Scholar 

  • Shewmaker CK, Sheehy JA, Daley M et al (1999) Seed-specific over-expression of phytoene synthase: increase in carotenoids and other metabolic effects. Plant J 20:401–412

    Article  PubMed  CAS  Google Scholar 

  • Shintani D, Dellapenna D (1998) Elevating the vitamin E content of plants through metabolic engineering. Science 282:2098–2100

    Article  PubMed  CAS  Google Scholar 

  • Traber MG, Sies H (1996) Vitamin in humans: demand and delivery. Ann Rev Nutr 16:321–347

    Article  CAS  Google Scholar 

  • Tsegaye Y, Shintani DK, DellaPenna D (2002) Overexpression of the enzyme p-hydroxyphenolpyruvate dioxygenase in Arabidopsis and its relation to tocopherol biosynthesis. Plant Physiol Biochem 40:913–920

    Article  CAS  Google Scholar 

  • Valentin HE, Lincoln K, Moshiri F et al (2006) The Arabidopsis vitamin E pathway gene5-1 mutant reveals a critical role for Phytol Kinase in seed tocopherol biosynthesis. Plant Cell 18:212–224

    Article  PubMed  CAS  Google Scholar 

  • Weber EJ (1987) Carotenoids and tocols of corn grain determined by HPLC. J Am Oil Chem Soc 64:1129–1134

    Article  CAS  Google Scholar 

  • Wong JC, Lambert RJ, Tadmor Y et al (2003) QTL associated with accumulation of tocopherols in maize. Crop Sci 43:2257–2266

    CAS  Google Scholar 

  • Zeng ZB (1994) Precision mapping of quantitative trait loci. Genetics 136:1457–1468

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by the Nature Science Foundation of China and High Tech. Project of China. The authors wish to thank the Chinese and Indian governments for providing fellowship for PhD program to Subhash Chander.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. S. Li.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chander, S., Guo, Y.Q., Yang, X.H. et al. Genetic dissection of tocopherol content and composition in maize grain using quantitative trait loci analysis and the candidate gene approach. Mol Breeding 22, 353–365 (2008). https://doi.org/10.1007/s11032-008-9180-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11032-008-9180-8

Keywords

Navigation