Skip to main content
Log in

Regulation of gaseous signaling molecules on proline metabolism in plants

  • Review
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Proline accumulation plays an important role in the response and adaptation of plants to abiotic stress. Gaseous signaling molecules such as nitric oxide (NO), carbon monoxide (CO), and hydrogen sulfide (H2S) are involved in complicated events of cell signaling. However, the regulatory mechanisms of gaseous signaling molecules on proline synthesis and degradation are still unclear. This review summarized the biosynthesis and degradation of proline. The role of gaseous signaling molecules and their cross-talk on proline metabolic regulation in plants was discussed along with the future perspectives.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Chen J, Shang YT, Wang WH, Chen XY, He EM, Zheng HL, Shangguan Z (2016) Hydrogen sulfide-mediated polyamines and sugar changes are involved in hydrogen sulfide-induced drought tolerance in Spinacia oleracea seedlings. Front Plant Sci 7:1173

    PubMed  PubMed Central  Google Scholar 

  • Cui W, Qi F, Zhang Y, Cao H, Zhang J, Wang R, Shen W (2015) Methane-rich water induces cucumber adventitious rooting through heme oxygenase1/carbon monoxide and Ca2+ pathways. Plant Cell Rep 34(3):435–445

    Article  CAS  PubMed  Google Scholar 

  • Fan HF, Du CX, Guo SR (2012) Effect of nitric oxide on proline metabolism in cucumber seedlings under salinity stress. J Am Soc Hort Sci 137(3):127–133

    CAS  Google Scholar 

  • Fujita T, Maggio A, Garcia-Rios M, Bressan RA, Csonka LN (1999) Comparative analysis of the regulation of expression and structures of two evolutionarily divergent genes for ∆1-pyrroline-5-carboxylate synthetase from tomato. Plant Physiol 118:661–667

    Article  Google Scholar 

  • He H, He L (2014) The role of carbon monoxide signaling in the responses of plants to abiotic stresses. Nitric Oxide 42:43–43

    Article  CAS  Google Scholar 

  • He H, Zhan J, He L, Gu M (2012) Nitric oxide signaling in aluminum stress in plants. Protoplasma 249(3):483–492

    Article  CAS  PubMed  Google Scholar 

  • Jin Q, Zhu K, Cui W, Xie Y, Han B, Shen W (2013) Hydrogen gas acts as a novel bioactive molecule in enhancing plant tolerance to paraquat-induced oxidative stress via the modulation of heme oxygenase-1 signalling system. Plant Cell Environ 36(5):956–969

    Article  CAS  PubMed  Google Scholar 

  • Ke X, Cheng Z, Ma W, Gong M (2013) Nitric oxide enhances osmoregulation of tobacco (Nicotiana tobacam L.) cultured cells under phenylethanoid glycosides (PEG) 6000 stress by regulating proline metabolism. Afr J Biotechnol 12(11):1257–1266

    CAS  Google Scholar 

  • Ke X, Cheng Z, Li J, Ma W, Gong M (2014) Effects of nitric oxide on osmoregulation of tobacco cells under salt stress. Acta Bot Boreal-Occident Sin 34(8):1596–1607 (Chinese)

    CAS  Google Scholar 

  • Keppler F, Hamilton JT, Brass M, Rockmann T (2006) Methane emissions from terrestrial plants under aerobic conditions. Nature 439(7073):187–191

    Article  CAS  PubMed  Google Scholar 

  • Kishor PBK, Sreenivasulu N (2014) Is proline accumulation per se correlated with stress tolerance or is proline homeostasis a more critical issue? Plant Cell Environ 37:300–311

    Article  Google Scholar 

  • Kong WW, Zhang LP, Guo K, Liu ZP, Yang ZM (2010) Carbon monoxide improves adaptation of Arabidopsis to iron deficiency. Plant Biotechnol J 8:88–99

    Article  CAS  PubMed  Google Scholar 

  • Kubala S, Wojtyla L, Quinet M, Lechowska K, Lutts S, Garnczarska M (2015) Enhanced expression of the proline synthesis gene P5CSA in relation to seed osmopriming improvement of Brassica napus germination under salinity stress. J Plant Physiol 183(4):1–12

    Article  CAS  PubMed  Google Scholar 

  • Li ZG, Ding XJ, Du PF (2013) Hydrogen sulfide donor sodium hydrosulfide-improved heat tolerance in maize and involvement of proline. J Plant Physiol 170(8):741–747

    Article  CAS  PubMed  Google Scholar 

  • Liang X, Zhang L, Natarajan SK, Becker DF (2013) Proline mechanisms of stress survival. Antioxid Redox Sign 19(9):998–1011

    Article  CAS  Google Scholar 

  • Liu J, Hu H, Wang X, Li B (2010a) Effect of nitric oxide on proline accumulation in ryegrass seedlings subjected to salt stress. Acta Agrestia Sinica 18(6):786–791 (Chinese)

    Google Scholar 

  • Liu Y, Xu S, Ling T, Xu L, Shen W (2010b) Heme oxygenase/carbon monoxide system participates in regulating wheat seed germination under osmotic stress involving the nitric oxide pathway. J Plant Physiol 167:1371–1379

    Article  CAS  PubMed  Google Scholar 

  • Lopez-Carrion AI, Castellano R, Rosales MA, Ruiz JM, Romero L (2008) Role of nitric oxide under saline stress: implications on proline metabolism. Biol Plant 52(3):587–591

    Article  CAS  Google Scholar 

  • Luo Z, Li D, Du R, Mou W (2015) Hydrogen sulfide alleviates chilling injury of banana fruit by enhanced antioxidant system and proline content. Sci Hortic 183(12):144–151

    Article  CAS  Google Scholar 

  • Noriega GO, Yannarelli GG, Balestrasse KB, Batlle A, Tomaro ML (2007) The effect of nitric oxide on heme oxygenase gene expression in soybean leaves. Planta 226:1155–1163

    Article  CAS  PubMed  Google Scholar 

  • Planchet E, Verdu I, Delahaie J, Cukier C, Girard C, Morere-Le Paven MC, Limami AM (2014) Abscisic acid-induced nitric oxide and proline accumulation in independent pathways under water-deficit stress during seedling establishment in Medicago truncatula. J Exp Bot 65(8):2161–2170

    Article  CAS  PubMed  Google Scholar 

  • Rausch T, Wachter A (2005) Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci 10:503–509

    Article  CAS  PubMed  Google Scholar 

  • Rejeb KB, Abdelly C, Savouré A (2014) How reactive oxygen species and proline face stress together. Plant Physiol Bioch 80:278–284

    Article  Google Scholar 

  • Ruan HH, Shen WB, Xu LL (2004) Nitric oxide involved in the abscisic acid induced proline accumulation in wheat seedling leaves under salt stress. Acta Bot Sin 46(11):1307–1315

    CAS  Google Scholar 

  • Santa-Cruz DM, Pacienza NA, Polizio AH, Balestrasse KB, Tomaro ML, Yannarelli GG (2010) Nitric oxide synthase-like dependent NO production enhances heme oxygenase up-regulation in ultraviolet-B-irradiated soybean plants. Phytochemistry 71:1700–1707

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Imparatta C, Rodriguez-Ruiz M, Borsani O, Corpas FJ, Monza J (2016) In vivo and in vitro approaches demonstrate proline is not directly involved in the protection against superoxide, nitric oxide, nitrogen dioxide and peroxynitrite. Funct Plant Biol 43:870–879

    CAS  Google Scholar 

  • Stines AP, Naylor DJ, Høj PB, van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of ∆1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Szabados L, Savouré A (2009) Proline: a multifunctional amino acid. Trends Plant Sci 15:89–97

    Article  PubMed  Google Scholar 

  • Takagi H (2008) Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81:211–223

    Article  CAS  PubMed  Google Scholar 

  • Tian B, Qiao Z, Zhang L, Li H, Pei Y (2016) Hydrogen sulfide and proline cooperate to alleviate cadmium stress in foxtail millet seedlings. Plant Physiol Biochem 109:293–299

    Article  CAS  PubMed  Google Scholar 

  • Trovato M, Mattioli R, Costantino P (2008) Multiple roles of proline in plant stress tolerance and development. Rendiconti Lincei 19:325–346

    Article  Google Scholar 

  • Wang R (2012) Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92(2):791–896

    Article  CAS  PubMed  Google Scholar 

  • Wang YQ, Li L, Cui WT, Xu S, Shen W, Wang R (2012) Hydrogen sulfide enhances alfalfa (Medicago sativa) tolerance against salinity during seed germination by nitric oxide pathway. Plant Soil 351(1–2):107–119

    Article  CAS  Google Scholar 

  • Wang Y, Luo Z, Du R, Liu Y, Ying T, Mao L (2013) Effect of nitric oxide on antioxidative response and proline metabolism in banana during cold storage. J Agri Food Chem 61(37):8880–8887

    Article  CAS  Google Scholar 

  • Wen JF, Gong M, Liu Y, Hu JL, Deng MH (2013) Effect of hydrogen peroxide on growth and activity of some enzymes involved in proline metabolism of sweet corn seedlings under copper stress. Sci Hortic 164:366–371

    Article  CAS  Google Scholar 

  • Xie Y, Ling T, Han Y, Liu K, Zheng Q, Huang L, Yuan X, He Z, Hu B, Fang L, Shen Z, Yang Q, Shen W (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31:1864–1881

    Article  CAS  PubMed  Google Scholar 

  • Xie Y, Mao Y, Zhang W, Lai D, Wang Q, Shen W (2014a) Reactive oxygen species-dependent nitric oxide production contributes to hydrogen-promoted stomatal closure in Arabidopsis. Plant Physiol 165(2):759–773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie YJ, Zhang C, Lai DW, Sun Y, Samma MK, Zhang J, Shen W (2014b) Hydrogen sulfide delays GA-triggered programmed cell death in wheat aleurone layers by the modulation of glutathione homeostasis and heme oxygenase-1 expression. J Plant Physiol 171:53–62

    Article  CAS  PubMed  Google Scholar 

  • Xu S, Zhu SS, Jiang YL, Wang N, Wang R, Shen W, Yang J (2013) Hydrogen-rich water alleviates salt stress in rice during seed germination. Plant Soil 370(1):47–57

    Article  CAS  Google Scholar 

  • Xuan W, Huang LQ, Li M, Huang B, Xu S, Liu H, Gao Y, Shen W (2007) Induction of growth elongation in wheat root segments by heme molecules: a regulatory role of carbon monoxide in plants? Plant Growth Regul 52:41–51

    Article  CAS  Google Scholar 

  • Yang SL, Gong M (2009) Effects of nitric oxide on proline accumulation and metabolic pathways in maize (Zea mays L.) seedlings. Plant Physiol Commu 45(8):781–784 (Chinese)

    CAS  Google Scholar 

  • Yang SL, Lan SS, Gong M (2009) Hydrogen peroxide-induced proline and metabolic pathway of its accumulation in maize seedlings. J Plant Physiol 166:1694–1699

    Article  CAS  PubMed  Google Scholar 

  • Yang SL, Chen K, Wang SS, Gong M (2015) Osmoregulation as a key factor in drought hardening-induced drought tolerance in Jatropha curcas. Biol Plantarum 59(3):529–536

    Article  CAS  Google Scholar 

  • Yuan XX, Wang J, Xie YJ, Shen WB (2009) Effects of carbon monoxide on salt tolerance and proline content of roots in wheat seedling. Plant Physiol Commun 45(6):567–570 (Chinese)

    CAS  Google Scholar 

  • Zhang LP, Mehta SK, Liu ZP, Yang ZM (2008) Copper-induced proline synthesis is associated with nitric oxide generation in Chlamydomonas reinhardtii. Plant Cell Physiol 49(3):411–419

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Li Y, Yuan F, Hu S, He P (2012) Effects of hematin and carbon monoxide on the salinity stress responses of Cassia obtusifolia L. seeds and seedlings. Plant Soil 359:85–105

    Article  CAS  Google Scholar 

  • Zhao MG, Chen L, Zhang LL, Zhang WH (2009) Nitric reductase-dependent nitric oxide production is involved in cold acclimation and freezing tolerance in Arabidopsis. Plant Physiol 151:755–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by grants from the National Natural Science Foundation of China (No. 31660352) and the Science & Technology Development Fund of Guangxi Academy of Agricultural Sciences (Guinongke2017JZ11). We thank the reviewers for their helpful comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Long-Fei He.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Communicated by Neal Stewart.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, H., He, LF. Regulation of gaseous signaling molecules on proline metabolism in plants. Plant Cell Rep 37, 387–392 (2018). https://doi.org/10.1007/s00299-017-2239-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-017-2239-4

Keyword

Navigation