Skip to main content
Log in

Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications

  • Mini-Review
  • Published:
Applied Microbiology and Biotechnology Aims and scope Submit manuscript

Abstract

Proline is an important amino acid in terms of its biological functions and biotechnological applications. In response to osmotic stress, proline is accumulated in many bacterial and plant cells as an osmoprotectant. However, it has been shown that proline levels are not increased under various stress conditions in the yeast Saccharomyces cerevisiae cells. Proline is believed to serve multiple functions in vitro such as protein and membrane stabilization, lowering the T m of DNA, and scavenging of reactive oxygen species, but the mechanisms of these functions in vivo are poorly understood. Yeast cells biosynthesize proline from glutamate in the cytoplasm via the same pathway found in bacteria and plants and also convert excess proline to glutamate in the mitochondria. Based on the fact that proline has stress-protective activity, S. cerevisiae cells that accumulate proline were constructed by disrupting the PUT1 gene involved in the degradation pathway and by expressing the mutant PRO1 gene encoding the feedback inhibition-less sensitive γ-glutamate kinase to enhance the biosynthetic activity. The engineered yeast strains successfully showed enhanced tolerance to many stresses, including freezing, desiccation, oxidation, and ethanol. However, the appropriate cellular level and localization of proline play pivotal roles in the stress-protective effect. These results indicate that the increased stress protection is observed in yeast cells under the artificial condition of proline accumulation. Proline is expected to contribute to yeast-based industries by improving the production of frozen dough and alcoholic beverages or breakthroughs in bioethanol production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Alexandre H, Ansanay-Galeote V, Dequin S, Blondin B (2001) Global gene expression during short-term ethanol stress in Saccharomyces cerevisiae. FEBS Lett 498:98–103

    Article  CAS  PubMed  Google Scholar 

  • Ando A, Nakamura T, Murata Y, Takagi H, Shima J (2007) Identification and classification of genes required for tolerance to freeze–thaw stress revealed by genome-wide screening of Saccharomyces cerevisiae deletion strains. FEMS Yeast Res 7:244–253

    CAS  PubMed  Google Scholar 

  • André L, Hemming A, Adler L (1991) Osmoregulation in Saccharomyces cerevisiae. Studies on the osmotic induction of glycerol production and glycerol 3-phosphate dehydrogenase (NAD+). FEBS Lett 286:13–17

    PubMed  Google Scholar 

  • Andréasson C, Neve EP, Ljungdahl PO (2004) Four permeases import proline and the toxic proline analogue azetidine-2-carboxylate into yeast. Yeast 21:193–199

    PubMed  Google Scholar 

  • Aravind L, Koonin EV (1999) Novel predicted RNA-binding domains associated with the translation machinery. J Mol Evol 48:291–302

    CAS  PubMed  Google Scholar 

  • Atkinson DE (1977) Cellular energy metabolism and its regulation. Academic, New York

    Google Scholar 

  • Attfield PV (1987) Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett 225:259–263

    CAS  PubMed  Google Scholar 

  • Axcelrod JD, Majors J, Brandriss MC (1991) Proline-independent binding of PUT3 transcriptional activator protein detected by footprinting in vivo. Mol Cell Biol 11:564–567

    Google Scholar 

  • Belitsky BR, Brill J, Bremer E, Sonenshein AL (2001) Multiple genes for the last step of proline biosynthesis in Bacillus subtilis. J Bacteriol 183:4389–4392

    CAS  PubMed  PubMed Central  Google Scholar 

  • Blomberg A, Adler L (1989) Roles of glycerol and glycerol-3-phosphate dehydrogenase (NAD+) in acquired osmotolerance of Saccharomyces cerevisiae. J Bacteriol 171:1087–1092

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borsani O, Zhu J, Verslues PE, Sunkar R, Zhu JK (2005) Endogenous siRNAs derived from a pair of natural cis-antisense transcripts regulate salt tolerance in Arabidopsis. Cell 123:1279–1291

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brady RA, Csonka LN (1988) Transcriptional regulation of the proC gene of Salmonella typhimurium. J Bacteriol 170:2379–2382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC (1983) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT2 gene. Mol Cell Biol 3:1846–1856

    CAS  PubMed  PubMed Central  Google Scholar 

  • Brandriss MC, Falvey DA (1992) Proline biosynthesis in Saccharomyces cerevisiae: analysis of the PRO3 gene, which encodes Δ1-pyrroline-5-carboxylate reductase. J Bacteriol 174:3782–3788

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bremer E, Krämer R (2000) Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM, Washington, DC, pp 79–97

    Google Scholar 

  • Carpenter JF, Crowe JH (1988) Modes of stabilization of a protein by organic solutes during desiccation. Cryobiology 25:459–470

    CAS  Google Scholar 

  • Causton HC, Ren B, Koh SS, Harbison CT, Kanin E, Jennings EG, Lee TI, True HL, Lander ES, Young RA (2001) Remodeling of yeast genome expression in response to environmental changes. Mol Biol Cell 12:323–337

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen C, Dickman MB (2005) Proline suppresses apoptosis in the fungal pathogen Colletotrichum trifolii. Proc Natl Acad Sci USA 102:3459–3464

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Cao J, Zheng C, Liu Q (2006) Directed evolution of an artificial bifunctional enzyme, γ-glutamyl kinase/γ-glutamyl phosphate reductase, for improved osmotic tolerance of Escherichia coli transformants. FEMS Microbiol Lett 263:41–47

    CAS  PubMed  Google Scholar 

  • Costa V, Amorim MA, Reis E, Quintanilha A, Moradas-Ferreira P (1997) Mitochondrial superoxide dismutase is essential for ethanol tolerance of Saccharomyces cerevisiae in the post-diauxic phase. Microbiol 143:1649–1656

    CAS  Google Scholar 

  • Csonka LN (1981) Proline over-production results in enhanced osmotolerance in Salmonella typhimurium. Mol Gen Genet 182:82–86

    CAS  PubMed  Google Scholar 

  • Csonka LN, Hanson AD (1991) Prokaryotic osmoregulation: genetics and physiology. Annu Rev Microbiol 45:569–606

    CAS  PubMed  Google Scholar 

  • Csonka LN, Gelvin SB, Goodner BW, Orser CS, Siemieniak D, Slightom JL (1988) Nucleotide sequence of a mutation in the proB gene of Escherichia coli that confers proline overproduction and enhanced tolerance to osmotic stress. Gene 64:199–205

    CAS  PubMed  Google Scholar 

  • Dandekar AM, Uratsu SL (1988) A single base pair change in proline biosynthesis genes causes osmotic stress tolerance. J Bacteriol 170:5943–5945

    CAS  PubMed  PubMed Central  Google Scholar 

  • Daugherty JR, Rai R, el Berry HM, Cooper TG (1993) Regulatory circuit for responses of nitrogen catabolic gene expression to the GLN3 and DAL80 proteins and nitrogen catabolite repression in Saccharomyces cerevisiae. J Bacteriol 175:64–73

    CAS  PubMed  PubMed Central  Google Scholar 

  • Degols G, Jauniaux JC, Wiame JM (1987) Molecular characterization of transposable-element-associated mutations that lead to constitutive l-ornithine aminotransferase expression in Saccharomyces cerevisiae. Eur J Biochem 165:289–296

    CAS  PubMed  Google Scholar 

  • Delauney AJ, Verma DPS (1993) Proline biosynthesis and osmoregulation in plants. Plant J 4:215–223

    CAS  Google Scholar 

  • Des Etages SA, Falvey DA, Reece RJ, Brandriss MC (1996) Functional analysis of the PUT3 transcriptional activator of the proline utilization pathway in Saccharomyces cerevisiae. Genetics 142:1069–1082

    CAS  PubMed  PubMed Central  Google Scholar 

  • Des Etages SA, Saxena D, Huang HL, Falvey DA, Barber D, Brandriss MC (2001) Conformational changes play a role in regulating the activity of the proline utilization pathway-specific regulator in Saccharomyces cerevisiae. Mol Microbiol 40:890–899

    CAS  PubMed  Google Scholar 

  • Deuschle K, Funck D, Forlani G, Stransky H, Biehl A, Leister D, van der Graaff E, Kunze R, Frommer WB (2004) The role of [Delta]1-pyrroline-5-carboxylate dehydrogenase in proline degradation. Plant Cell 16:3413–3425

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fricke W, Pahlich E (1990) The effect of water stress on the vacuole-extravacuole compartmentation of proline in potato cell suspension cultures. Physiol Plant 78:374–378

    CAS  Google Scholar 

  • Fujita T, Maggio A, García-Ríos M, Stauffacher C, Bressan RA, Csonka LN (2003) Identification of regions of the tomato γ-glutamyl kinase that are involved in allosteric regulation by proline. J Biol Chem 278:14203–14210

    CAS  PubMed  Google Scholar 

  • Hare PD, Cress WA (1997) Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regul 21:79–102

    CAS  Google Scholar 

  • Hayzer DJ, Leisinger T (1980) The gene–enzyme relationships of proline biosynthesis in Escherichia coli. J Gen Microbiol 118:287–293

    CAS  PubMed  Google Scholar 

  • Helliwell SB, Losko S, Kaiser CA (2001) Components of a ubiquitin ligase complex specify polyubiquitination and intracellular trafficking of the general amino acid permease. J Cell Biol 153:649–662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hellmann H, Funck D, Rentsch D, Frommer WB (2000) Hypersensitivity of an Arabidopsis sugar signaling mutant toward exogenous proline application. Plant Physiol. 123:779–789

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hinnebusch AG (1988) Mechanisms of gene regulation in the general control of amino acid biosynthesis in Saccharomyces cerevisiae. Microbiol Rev 52:248–273

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hino A (2002) Safety assessment and public concerns for genetically modified food products: the Japanese experience. Toxicol Pathol 30:126–128

    PubMed  Google Scholar 

  • Hirasawa R, Yokoigawa K, Isobe Y, Kawai H (2001) Improving the freeze tolerance of baker’s yeast by loading with trehalose. Biosci Biotechnol Biochem 65:522–526

    CAS  PubMed  Google Scholar 

  • Hong Z, Lakkineni K, Zhang Z, Verma DP (2000) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiol 122:1129–1136

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hottiger T, De Virgilio C, Hall MN, Boller T, Wiemken A (1994) The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur J Biochem 219:187–193

    CAS  PubMed  Google Scholar 

  • Hsu KH, Hoseney RC, Seib PA (1979) Frozen dough. I. Factors affecting stability of yeasted dough. Cereal Chem 56:419–424

    Google Scholar 

  • Hu CA, Delauney AJ, Verma DPS (1992) A bifunctional enzyme (Δ1-pyrroline-5-carboxylate synthetase) catalyzes the first two steps in proline biosynthesis in plants. Proc Natl Acad Sci USA 89:9354–9358

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hu CA, Lin WW, Obie C, Valle D (1999) Molecular enzymology of mammalian Δ1-pyrroline-5-carboxylate synthase. Alternative splice donor utilization generates isoforms with different sensitivity to ornithine inhibition. J Biol Chem 274:6754–6762

    CAS  PubMed  Google Scholar 

  • Huang HL, Brandriss MC (2000) The regulator of the yeast proline utilization pathway is differentially phosphorylated in response to the quality of the nitrogen source. Mol Cell Biol 20:892–899

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ignatova Z, Gierasch LM (2006) Inhibition of protein aggregation in vitro and in vivo by a natural osmoprotectant. Proc Natl Acad Sci USA 103:13357–13361

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ishitani R, Nureki O, Fukai S, Kijimoto T, Nameki N, Watanabe M, Kondo H, Sekine M, Okada N, Nishimura S, Yokoyama S (2002) Crystal structure of archaeosine tRNA-guanine transglycosylase. J Mol Biol 318:665–677

    CAS  PubMed  Google Scholar 

  • Izawa S, Sato M, Yokoigawa K, Inoue Y (2004) Intracellular glycerol influences resistance to freeze stress in Saccharomyces cerevisiae: analysis of a quadruple mutant in glycerol dehydrogenase genes and glycerol-enriched cells. Appl Microbiol Biotechnol 66:108–114

    CAS  PubMed  Google Scholar 

  • Jauniaux JC, Grenson M (1990) GAP1, the general amino acid permease gene of Saccharomyces cerevisiae. Nucleotide sequence, protein similarity with the other bakers yeast amino acid permeases, and nitrogen catabolite repression. Eur J Biochem 190:39–44

    CAS  PubMed  Google Scholar 

  • Jones M, Pierce JS (1964) Adsorption of amino acids from wort by yeasts. J Inst Brew 70:307–315

    CAS  Google Scholar 

  • Kaino T, Takagi H (2008) Gene expression profiles and intracellular contents of stress protectants in Saccharomyces cerevisiae under ethanol and sorbitol stresses. Appl Microbiol Biotechnol 79:273–283

    CAS  PubMed  Google Scholar 

  • Kaino T, Tateiwa T, Mizukami-Murata S, Shima J, Takagi H (2008) Self-cloning baker’s yeasts that accumulate proline enhance freeze tolerance in doughs. Appl Environ Microbiol 74:5845–5849

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kandror O, Bretschneider N, Kreydin E, Cavalieri D, Goldberg AL (2004) Yeast adapt to near-freezing temperatures by STRE/Msn2,4-dependent induction of trehalose synthesis and certain molecular chaperones. Mol Cell 13:771–781

    CAS  PubMed  Google Scholar 

  • Kaul S, Sharma SS, Mehta IK (2008) Free radical scavenging potential of L-proline: evidence from in vitro assays. Amino Acids 34:315–320

    CAS  PubMed  Google Scholar 

  • Kavi Kishor PB, Hong Z, Miao GH, Hu CAA, Verma DPS (1995) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers osmotolerance in transgenic plants. Plant Physiol 108:1387–1394

    Google Scholar 

  • Kawahara Y, Ohsumi T, Yoshihara Y, Ikeda S (1989) Proline in the osmoregulation of Brevibacterium lactofermentum. Agric Biol Chem 53:2475–2479

    CAS  Google Scholar 

  • Kiyosue T, Yoshiba Y, Yamaguchi-Shinozaki K, Shinozaki K (1996) A nuclear gene encoding mitochondrial proline dehydrogenase, an enzyme involved in proline metabolism, is upregulated by proline but downregulated by dehydration in Arabidopsis. Plant Cell 8:1323–1335

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kodama K (1993) Sake-brewing yeasts. In: Rose AH, Harrison JS (eds) The yeasts. vol. 3. Academic, London, United Kingdom, pp 129–168

    Google Scholar 

  • Krishnan N, Dickman MB, Becker DF (2008) Proline modulates the intracellular redox environment and protects mammalian cells against oxidative stress. Free Radic Biol Med 44:671–681

    CAS  PubMed  Google Scholar 

  • Kunkee RE, Bisson LF (1993) Wine-making yeast. In: Rose AH, Harrison JS (eds) The yeast. vol. 5, 2nd edn. Academic, San Diego, California, pp 94–99

    Google Scholar 

  • Li W, Brandriss MC (1992) Proline biosynthesis in Saccharomyces cerevisiae: molecular analysis of the PRO1 gene, which encodes γ-glutamyl kinase. J Bacteriol 174:4148–4156

    CAS  PubMed  PubMed Central  Google Scholar 

  • List B, Lerner RA, Barbas CF III (2000) Proline-catalyzed direct asymmetric aldol reactions. J Am Chem Soc 122:2395–2396

    CAS  Google Scholar 

  • Liu ZL (2006) Genomic adaptation of ethanologenic yeast to biomass conversion inhibitors. Appl Microbiol Biotechnol 73:27–36

    CAS  PubMed  Google Scholar 

  • Maggio A, Miyazaki S, Veronese P, Fujita T, Ibeas JI, Damsz B, Narasimhan ML, Hasegawa PM, Joly RJ, Bressan RA (2002) Does proline accumulation play an active role in stress-induced growth reduction. Plant J 31:699–712

    CAS  PubMed  Google Scholar 

  • Mani S, Van De Cotte B, Van Montagu M, Verbruggen N (2002) Altered levels of proline dehydrogenase cause hypersensitivity to proline and its analogs in Arabidopsis. Plant Physiol 128:73–83

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marco-Marín C, Gil-Ortiz F, Pérez-Arellano I, Cervera J, Fita I, Rubio V (2007) A novel two-domain architecture within the amino acid kinase enzyme family revealed by the crystal structure of Escherichia coli glutamate 5-kinase. J Mol Biol 367:1431–1446

    PubMed  Google Scholar 

  • Matsuura K, Takagi H (2005) Vacuolar functions are involved in stress-protective effect of intracellular proline in Saccharomyces cerevisiae. J Biosci Bioeng 100:538–544

    CAS  PubMed  Google Scholar 

  • Maxwell S, Davis GE (2000) Differential gene expression in p53-mediated apoptosis-resistant vs. apoptosis-sensitive tumor cell lines. Proc Natl Acad Sci USA 97:13009–13014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Meric L, Lambert-Guilois S, Neyreneuf O, Richard-Molard D (1995) Cryoresistance of baker’s Saccharomyces cerevisiae in frozen dough: contribution of cellular trehalose. Cereal Chem 72:609–615

    CAS  Google Scholar 

  • Middelhoven WJ (1964) The pathway of arginine breakdown in Saccharomyces cerevisiae. Biochim Biophys Acta 93:650–652

    CAS  PubMed  Google Scholar 

  • Mohanty AP, Matysik J (2001) Effect of proline on the production of single oxygen. Amino Acids 21:195–200

    PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2002) Effect of proline and arginine metabolism on freezing stress of Saccharomyces cerevisiae. J Biosci Bioeng 94:390–394

    CAS  PubMed  Google Scholar 

  • Morita Y, Nakamori S, Takagi H (2003) l-proline accumulation and freeze tolerance of Saccharomyces cerevisiae are caused by a mutation in the PRO1 gene encoding γ-glutamyl kinase. Appl Environ Microbiol 69:212–219

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nanjo T, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K (1999) Antisense suppression of proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Lett 461:205–210

    CAS  PubMed  Google Scholar 

  • Nanjo T, Fujita M, Seki M, Kato T, Tabata S, Shinozaki K (2003) Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant Cell Physiol 44:541–548

    CAS  PubMed  Google Scholar 

  • Nomura M, Takagi H (2004) Role of the yeast acetyltransferase Mpr1 in oxidative stress: regulation of oxygen reactive species caused by a toxic proline catabolism intermediate. Proc Natl Acad Sci USA 101:12616–12621

    CAS  PubMed  PubMed Central  Google Scholar 

  • Northrup AB, MacMillan DW (2004) Two-step synthesis of carbohydrates by selective aldol reactions. Science 305:1752–1755

    CAS  PubMed  Google Scholar 

  • Omori K, Suzuki S, Imai Y, Komatsubara S (1991) Analysis of the Serratia marcescens proBA operon and feedback control of proline biosynthesis. J Gen Microbiol 137:509–517

    CAS  PubMed  Google Scholar 

  • Omori K, Suzuki S, Imai Y, Komatsubara S (1992) Analysis of the mutant proBA operon from a proline-producing strain of Serratia marcescens. J Gen Microbiol 138:693–699

    CAS  PubMed  Google Scholar 

  • Omura F, Fujita A, Miyajima K, Fukui N (2005) Engineering of yeast Put4 permease and its application to lager yeast for efficient proline assimilation. Biosci Biotechnol Biochem 69:1162–1171

    CAS  PubMed  Google Scholar 

  • Orser CS, Goodner BW, Johnston M, Gelvin SB, Csonka LN (1988) The Escherichia coli proB gene corrects the proline auxotrophy of Saccharomyces cerevisiae pro1 mutants. Mol Gen Genet 212:124–128

    CAS  PubMed  Google Scholar 

  • Påhlman AK, Granath K, Ansell R, Hohmann S, Adler L (2001) The yeast glycerol 3-phosphatases Gpp1p and Gpp2p are required for glycerol biosynthesis and differentially involved in the cellular responses to osmotic, anaerobic, and oxidative stress. J Biol Chem 276:3555–3563

    PubMed  Google Scholar 

  • Pan H, Agarwalla S, Moustakas DT, Finer-Moore J, Stroud, RM (2003) Structure of tRNA pseudouridine synthase TruB and its RNA complex: RNA recognition through a combination of rigid docking and induced fit. Proc Natl Acad Sci USA 100:12648–12653

    CAS  PubMed  PubMed Central  Google Scholar 

  • Panadero J, Pallotti C, Rodríguez-Vargas S, Randez-Gil F, Prieto JA (2006) A downshift in temperature activates the high osmolarity glycerol (HOG) pathway, which determines freeze tolerance in Saccharomyces cerevisiae. J Biol Chem 281:4638–4645

    CAS  PubMed  Google Scholar 

  • Peng Z, Lu Q, Verma DPS (1996) Reciprocal regulation of Δ1-pyrroline-5-carboxylate synthetase and proline dehydrogenase genes controls proline levels during and after osmotic stress in plants. Mol Gen Genet 253:334–341

    CAS  PubMed  Google Scholar 

  • Perez-Arellano I, Rubio V, Cervera J (2005) Dissection of Escherichia coli glutamate 5-kinase: functional impact of the deletion of the PUA domain. FEBS Lett 579:6903–6908

    CAS  PubMed  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407

    CAS  PubMed  Google Scholar 

  • Rajendrakumar CSV, Suryanarayana T, Reddy AR (1997) DNA helix destabilization by proline and betaine: possible role in the salinity tolerance process. FEBS Lett 410:201–205

    CAS  PubMed  Google Scholar 

  • Ramón-Maiques S, Marina A, Gil-Ortiz F, Fita I, Rubio V (2002) Structure of acetylglutamate kinase, a key enzyme for arginine biosynthesis and a prototype for the amino acid kinase enzyme family, during catalysis. Structure 10:329–342

    PubMed  Google Scholar 

  • Rudolph AS, Crowe JH (1985) Membrane stabilization during freezing: the role of two natural cryoprotectants, trehalose and proline. Cryobiology 22:367–377

    CAS  PubMed  Google Scholar 

  • Russnak R, Konczal D, McIntire SL (2001) A family of yeast proteins mediating bidirectional vacuolar amino acid transport. J Biol Chem 276:23849–23857

    CAS  PubMed  Google Scholar 

  • Samuel D, Kumar TKS, Ganesh G, Jayaraman G, Yang PW, Chang MM, Trivedi VD, Wang SL, Hwang KC, Chang DK, Yu C (2000) Proline inhibits aggregation during protein refolding. Protein Sci 9:344–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sato T, Ohsumi Y, Anraku Y (1984) Substrate specificities of active transport systems for amino acids in vacuolar membrane vesicles of Saccharomyces cerevisiae. J Biol Chem 259:11505–11508

    CAS  PubMed  Google Scholar 

  • Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schade B, Jansen G, Whiteway M, Entian KD, Thomas DY (2004) Cold adaptation in budding yeast. Mol Biol Cell 15:5492–5502

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schobert B, Tschesche H (1978) Unusual solution properties of proline and its interaction with proteins. Biochim Biophys Acta 541:270–277

    CAS  PubMed  Google Scholar 

  • Seddon AP, Zhao KY, Meister A (1989) Activation of glutamate by γ-glutamate kinase: formation of γ-cis-cycloglutamyl phosphate, an analog of γ-glutamyl phosphate. J Biol Chem 264:11326–11335

    CAS  PubMed  Google Scholar 

  • Sekine T, Kawaguchi A, Hamano Y, Takagi H (2007) Desensitization of feedback inhibition of the Saccharomyces cerevisiae γ-glutamyl kinase enhances proline accumulation and freezing tolerance. Appl Environ Microbiol 73:4011–4019

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimazu M, Sekito T, Akiyama K, Ohsumi Y, Kakinuma Y (2005) A family of basic amino acid transporters of the vacuolar membrane from Saccharomyces cerevisiae. J Biol Chem 280:4851–4857

    CAS  PubMed  Google Scholar 

  • Sivakumar P, Sharmila P, Saradhi PP (1998) Proline suppresses rubisco activity in higher plants. Biochem Biophys Res Commun 252:428–432

    CAS  PubMed  Google Scholar 

  • Smirnoff N, Cumbes QJ (1989) Hydroxyl radical scavenging activity of compatible solutes. Phytochemistry 28:1057–1060

    CAS  Google Scholar 

  • Smith CJ, Deutch AH, Rushlow KE (1984) Purification and characteristics of a γ-glutamyl kinase involved in Escherichia coli proline biosynthesis. J Bacteriol 157:545–551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Springael JY, Galan JM, Haguenauer-Tsapis R, André B (1999) NH4 +-induced down-regulation of the Saccharomyces cerevisiae Gap1p permease involves its ubiquitination with lysine-63-linked chains. J Cell Sci 112:1375–1383

    CAS  PubMed  Google Scholar 

  • Stanbrough M, Magasanik B (1995) Transcriptional and posttranslational regulation of the general amino acid permease of Saccharomyces cerevisiae. J Bacteriol 177:94–102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stines AP, Naylor DJ, Hoj PB, van Heeswijck R (1999) Proline accumulation in developing grapevine fruit occurs independently of changes in the levels of Δ1-pyrroline-5-carboxylate synthetase mRNA or protein. Plant Physiol 120:923–931

    CAS  PubMed  PubMed Central  Google Scholar 

  • Strizhov N, Abrahám E, Okrész L, Blickling S, Zilberstein A, Schell J, Koncz C, Szabados L (1997) Differential expression of two P5CS genes controlling proline accumulation during salt-stress requires ABA and is regulated by ABA1, ABI1 and AXR2 in Arabidopsis. Plant J 12:557–569

    CAS  PubMed  Google Scholar 

  • Sugiura M, Kisumi M (1985) Proline-hyperproducing strains of Serratia marcescens: enhancement of proline analog-mediated growth inhibition by increasing osmotic stress. Appl Environ Microbiol 49:782–786

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sumrada RA, Cooper TG (1984) Nucleotide sequence of the Saccharomyces cerevisiae arginase gene (CAR1) and its transcription under various physiological conditions. J Bacteriol 160:1078–1087

    CAS  PubMed  PubMed Central  Google Scholar 

  • Szoke A, Miao GH, Hong Z, Verma DPS (1992) Subcellular localization of Δ1-pyrroline-5-carboxylate reductase in root/nodule and leaf of soybean. Plant Physiol 99:1642–1649

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Iwamoto F, Nakamori S (1997) Isolation of freeze-tolerant laboratory strains of Saccharomyces cerevisiae from proline-analogue-resistant mutants. Appl Microbiol Biotechnol 47:405–411

    CAS  PubMed  Google Scholar 

  • Takagi H, Sakai K, Morida K, Nakamori S (2000) Proline accumulation by mutation or disruption of the proline oxidase gene improves resistance to freezing and desiccation stresses in Saccharomyces cerevisiae. FEMS Microbiol Lett 184:103–108

    CAS  PubMed  Google Scholar 

  • Takagi H, Takaoka M, Kawaguchi A, Kubo Y (2005) Effect of l-proline on sake brewing and ethanol stress in Saccharomyces cerevisiae. Appl Environ Microbiol 71:8656–8662

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takagi H, Matsui F, Kawaguchi A, Wu H, Shimoi H, Kubo Y (2007) Construction and analysis of self-cloning sake yeasts that accumulate proline. J Biosci Bioeng 103:377–380

    CAS  PubMed  Google Scholar 

  • Terao Y, Nakamori S, Takagi H (2003) Gene dosage effect of l-proline biosynthetic enzymes on L-proline accumulation and freeze tolerance in Saccharomyces cerevisiae. Appl Environ Microbiol 69:6527–6532

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thevelein JM, Hohmann S (1995) Trehalose synthase: guard to the gate of glycolysis in yeast. Trends Biochem Sci 20:3–10

    CAS  PubMed  Google Scholar 

  • Thomas KC, Hynes SH, Ingledew WM (1994) Effects of particulate materials and osmoprotectants on very-high-gravity ethanolic fermentation by Saccharomyces cerevisiae. Appl Environ Microbiol 60:1519–1524

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tomenchok DM, Brandriss MC (1987) Gene-enzyme relationships in the proline biosynthetic pathway of Saccharomyces cerevisiae. J Bacteriol 169:5364–5372

    CAS  PubMed  PubMed Central  Google Scholar 

  • Trotter EW, Kao CMF, Berenfeld L, Botstein D, Petsko GA, Gray JV (2002) Misfolded proteins are competent to mediate a subset of the response to heat shock in Saccharomyces cerevisiae. J Biol Chem 177:44817–44825

    Google Scholar 

  • Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, Shinozaki K (2006) Engineering drought tolerance in plants: discovering and tailoring genes to unlock the future. Curr Opin Biotech 17:113–122

    CAS  PubMed  Google Scholar 

  • Vandenbol M, Jauniaux JC, Grenson M (1989) Nucleotide sequence of the Saccharomyces cerevisiae PUT4 proline-permease-encoding gene: similarities between CAN1, HIP1 and PUT4 permeases. Gene 83:153–159

    CAS  PubMed  Google Scholar 

  • Van Dijck P, Colavizza D, Smet P, Thevelein JM (1995) Differential importance of trehalose in stress resistance in fermenting and nonfermenting Saccharomyces cerevisiae cells. Appl Environ Microbiol 61:109–115

    PubMed  PubMed Central  Google Scholar 

  • Verbruggen N, Hua XJ, May M, Van Montagu M (1996) Environmental and developmental signals modulate proline homeostasis: evidence for a negative transcriptional regulator. Proc Natl Acad Sci USA 93:8787–8791

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang SS, Brandriss MC (1986) Proline utilization in Saccharomyces cerevisiae: analysis of the cloned PUT1 gene. Mol Cell Biol 6:2638–2645

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada M, Morishita H, Urano K, Shiozaki N, Yamaguchi-Shinozaki K, Shinozaki K, Yoshiba Y (2005) Effects of free proline accumulation in petunias under drought stress. J Exp Bot 56:1975–1981

    CAS  PubMed  Google Scholar 

  • Yoshiba Y, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y, Shinozaki K (1995) Correlation between the induction of a gene for Δ1-pyrroline-5-carboxylate synthetase and the accumulation of proline in Arabidopsis thaliana under osmotic stress. Plant J 7:751–760

    CAS  PubMed  Google Scholar 

  • Zhang CS, Liu Q, Verma DPS (1995) Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase, a bifunctional enzyme catalyzing the first two steps of proline biosynthesis in plants. J Biol Chem 270:20491–20496

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

I am greatly indebted to my co-researchers Drs. Hitoshi Shimoi, Jun Shima, Yoshimitsu Hamano, and Tomohiro Kaino for their helpful discussions. This review includes the work supported by a grant to H.T. from the Program for Promotion of Basic Research Activities for Innovative Biosciences (PROBRAIN).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiroshi Takagi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Takagi, H. Proline as a stress protectant in yeast: physiological functions, metabolic regulations, and biotechnological applications. Appl Microbiol Biotechnol 81, 211–223 (2008). https://doi.org/10.1007/s00253-008-1698-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00253-008-1698-5

Keywords

Navigation