Skip to main content

Potential of Extremophiles for Bioremediation

  • Chapter
  • First Online:
Microbial Rejuvenation of Polluted Environment

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 25))

Abstract

Extremophiles are microorganisms that flourish in habitats of extreme environments, including in high concentration of salts, pollutants, high or low temperature, an acidic or alkaline pH. All extreme environments are dominated by microorganisms belonging to Archaea, the third domain of life, evolutionary distinct from Bacteria and Eucarya. Over the past few years, the molecular biology of extremophilic Archaea has stimulated a lot of interest in the field of bioremediation. Bioremediation is the use of microorganisms for the degradation or removal of contaminants. Contamination of soils, sediments and water due to anthropogenic activities is a matter of concern at global level. Bioremediation has emerged as an effective solution for these problems. Most bioremediation research has focused on the processes performed by the domain Bacteria. Recently, extremophiles are the focus of growing interest for bioremediation because they can tolerate very harsh environmental conditions due to their ability to produce an array of molecules or extremozymes capable of functioning in the environment without denaturing. These extremozymes from extremophilic microorganisms have special characteristics such as stability to elevated temperature, extremes of pH, organic solvents and high ion strength. Due to the stability and persistence of these extremophilic microorganisms under adverse environmental conditions, they can be explored finding new species for using in the bioremediation of environments contaminated with extremely recalcitrant pollutants. Here, we provide an overview of the archaeal extremophilic microorganisms such as thermopiles, acidophiles, halophiles which have potential applications in the field of bioremediation of environmental pollutants, including hydrocarbons, heavy metals, pesticides, petroleum and wastewater treatments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Agarry S, Latinwo GK (2015) Biodegradation of diesel oil in soil and its enhancement by application of bioventing and amendment with brewery waste effluents as biostimulation-bioaugmentation agents. J Ecol Eng 13:82–91

    Article  Google Scholar 

  • Ahier BA, Tracy BL (1995) Radionuclides in the Great Lakes basin. Environ Health Perspect 103:89–101

    CAS  PubMed  PubMed Central  Google Scholar 

  • Alexander M (1981) Biodegradation of chemicals of environmental concern. Science 211:132–138

    Article  CAS  PubMed  Google Scholar 

  • Alexander M (1994) Biodegradation and bioremediation. Acedemic Press, San Diego, p 56

    Google Scholar 

  • Al-Maghrabi IMA, Bin Aqil AA, Islam MR, Chalaal O (1999) Use of thermophilic bacteria for bioremediation of petroleum contaminants. Energy Sources 21:17–29

    Article  CAS  Google Scholar 

  • Amachi S, Minami K, Miyasaka I, Fukunaga S (2010) Ability of anaerobic microorganisms to associate with iodine: 1251 tracer experiments using laboratory strains and enriched microbial communities from subsurface formation water. Chemosphere 79:349–354

    Article  CAS  PubMed  Google Scholar 

  • Arora S, Trivedi R, Rao GG (2012) Bioremediation of coastal and inland salt affected soils using halophilic soil microbes. Salinity News 18:3

    Google Scholar 

  • Arora S, Vanza M, Mehta R, Bhuva C, Patel P (2014) Halophilic microbes for bio-remediation of salt affected soils. Afr J Microbiol Res 8:3070–3078. https://doi.org/10.5897/AJMR2014.6960

    Article  CAS  Google Scholar 

  • Arulazhagan P, Al-Shekri K, Huda Q, Godon JJ, Basahi JM, Jeyakumar D (2017) Biodegradation of polycyclic aromatic hydrocarbons by an acidophilic Stenotrophomonas maltophilia strain AJH1 isolated from a mineral mining site in Saudi Arabia. Extremophiles 21:163–174

    Article  CAS  PubMed  Google Scholar 

  • Aurenik KS, Maezato Y, Blum PH, Kelly RM (2008) The genome sequence of the metal-mobilizing, extremely thermophilic archaeon Metallosphaera sedula provides insight into bioleaching-associated metabolism. Appl Environ Microbiol 74:682–692

    Article  CAS  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14:1–14

    Article  CAS  Google Scholar 

  • Blazquez B, Carmona M, Díaz E (2018) Transcriptional regulation of the peripheral pathway for the anaerobic catabolism of toluene and m-xylene in Azoarcus sp. CIB. Front Microbiol 9:506. https://doi.org/10.3389/fmicb.2018.00506

    Article  PubMed  PubMed Central  Google Scholar 

  • Bonete M, Martínez-Espinosa R (2011) Enzymes from halophilic archaea: open questions. In: Ventosa A, Orena A, Ma Y (eds) Halophiles and hypersaline environments, 1st edn. Springer, Berlin, pp 359–373. https://doi.org/10.1007/978-3-642-20198-1_19

    Chapter  Google Scholar 

  • Bonete M, Bautista V, Esclapez J, Garcia-Bonete M, Pire C, Camacho M et al (2015) New uses of haloarchaeal species in bioremediation processes. In: Shiomi M (ed) Advances in bioremediation of wastewater and polluted soil, 1st edn. InTech, Shanghai, pp 23–49. https://doi.org/10.5772/60667

    Chapter  Google Scholar 

  • Bonfa MRL, Grossman MJ, Mellado E, Durrant LR (2011) Biodegradation of aromatic hydrocarbons by Haloarchaea and their use for the reduction of the chemical oxygen demand of hypersaline petroleum produced water. Chemosphere 84:1671–1676

    Article  CAS  PubMed  Google Scholar 

  • Brim H, Venkateswaran A, Kostandarithes HM, Fredrickson JK, Daly MJ (2003) Engineering Deinococcus geothermalis for bioremediation of high-temperature radioactive waste environments. Appl Environ Microbiol 69:4575–4582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brock TD (1977) The value of basic research: discovery of Thermus aquaticus and other extreme thermophiles. Genetics 146:1207–1210

    Article  Google Scholar 

  • Butler CS, Mason JR (1997) Structure-function analysis of the bacterial aromatic ring-hydroxylating dioxygenases. Adv Microb Physiol 38:47–84

    Article  CAS  PubMed  Google Scholar 

  • Cabrera MA, Blamey JM (2018) Biotechnological application of archaeal enzymes from extreme environments. Biol Res 51:37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casamayor EO, Schafer H, Baneras L, Pedro-Alio C, Muyzer G (2000) Identification of and spatiotemporal differences between microbial assemblages from two neighboring sulfurous lakes: comparison by microscopy and denaturing gradient gel electrophoresis. Appl Environ Microbiol 66:499–508

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Castillo RF, Roldan RM, Blasco PR, Huertas RM, Caballero DF, Moreno-Vivian C, Martinez LM (2005) Biotecnología Ambiental, 1st edn. Editorial Tebar, Spain, pp 377–387

    Google Scholar 

  • Cavicchioli R (2011) Archaea-timeline of the third domain. Nat Rev Microbiol 9:51–61

    Article  CAS  PubMed  Google Scholar 

  • Chaudhary A, Pasha MI, Salgaonkar BB, Braganca JM (2014) Cadmium tolerance by Haloarchaeal strains isolated from solar saltrens of Goa, India. Intl J Biosci Biochem Bioinform 4:1–6

    Google Scholar 

  • Cisar JL, Snyder GH (2000) Fate and management of turfgrass chemicals. ACS Symp Ser 743:106–126

    Article  CAS  Google Scholar 

  • Damgaard LR, Nielsen LP, Revsbech NP (2001) Methane microprofiles in a sewage bio-film determined with a microscale biosensor. Water Res 35(6):1379–1386

    Article  CAS  PubMed  Google Scholar 

  • Das D, Salgaonkar BB, Mani K, Braganca JM (2014) Cadmium resistance in extremely halophilic archaeon Haloferax strain BBK2. Chemosphere 112:385–392

    Article  CAS  PubMed  Google Scholar 

  • Del Giudice I, Coppolecchia R, Merone L, Porzio E, Carusone TM, Mandrich L et al (2016) An efficient thermostable organophosphate hydrolase and its application in pesticide decontamination. Biotechnol Bioeng 113:724–734

    Article  PubMed  CAS  Google Scholar 

  • Delille D, Basseres A, Dessommes AA (1998) Effectiveness of bioremediation for oil-polluted Antarctic seawater. Polar Biol 19:237–241

    Article  Google Scholar 

  • DeLong EF (1998) Everything in moderation: Archaea as “non-extremophiles”. Cur Opin Microbiol 8:649–654

    CAS  Google Scholar 

  • DiChristina TJ (1992) Effects of nitrate and nitrite on dissimilatory iron reduction by Shewanella putrefaciens 200. J Bacteriol 174:1891–1896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Donati ER, Sani RK, Goh KM, Chan KG (2019) Editorial: recent advances bioremediation/biodegradation by extreme microorganisms. Front Microbiol 10:1851. https://doi.org/10.3389/fmicb.2019.01851

    Article  PubMed  PubMed Central  Google Scholar 

  • Dragun J, Kuffner AC, Schneiter RW (1984) Groundwater contamination: transport and transformation of organic chemicals. Chem Eng 91:65–70

    CAS  Google Scholar 

  • Eichler J (2001) Biotechnological uses of archaeal extremozymes. Biotechnol Adv 19:261–278

    Article  CAS  PubMed  Google Scholar 

  • Elias M, Dupuy J, Merone L, Mandrich L, Porzio E, Moniot S et al (2008) Structural basis for natural lactonase and promiscuous phosphotriesterase activities. J Mol Biol 379:1017–1028

    Article  CAS  PubMed  Google Scholar 

  • Emami S, Pourbabaee AA, Alikhani HA (2012) Bioremediation principles and techniques on petroleum hydrocarbon contaminated soil. Tech J Eng Appl Sci 2:320–323

    Google Scholar 

  • Fang Z, Li T, Chang F, Zhou P, Fang W, Hong Y, Zhang Z, Peng H, Xiao Y (2012) A new marine bacterial laccase with chloride-enhancing, alkaline-dependent activity and dye decolorization ability. Bioresour Technol 111:36–41

    Article  CAS  PubMed  Google Scholar 

  • Fathepure BZ (2014) Recent studies in microbial degradation of petroleum hydrocarbons in hypersaline environments. Front Microbiol 5:1–16

    Article  Google Scholar 

  • Figueroa M, Fernandez V, Arenas-Salinas M, Ahumada D, Muñoz-Villagran C, Cornejo F et al (2018) Synthesis and antibacterial activity of metal(loid) nanostructures by environmental multi-metal(loid) resistant bacteria and metal(loid)-reducing flavoproteins. Front Microbiol 9:959. https://doi.org/10.3389/fmicb.2018.00959

    Article  PubMed  PubMed Central  Google Scholar 

  • Finneran KT, Housewright ME, Lovely DR (2002) Multiple influences of nitrate on uranium solubility during bioremediation of uranium-contaminated subsurface sediments. Environ Microbiol 4:510–516

    Article  CAS  PubMed  Google Scholar 

  • da Fonseca FS, Angolini CF, Arruda MA, Junior CA, Santos CA, Saraive AM et al (2015) Identification of oxidoreductases from the petroleum Bacillus safensis strain. Biotechnol Rep 8:152–159

    Article  Google Scholar 

  • Fredrickson JK, Kostandarithes HM, Li SW, Plymale AE, Daly MJ (2000) Reduction of Fe(III), Cr(VI), U(VI), and Tc(VII) by Deinococcus radiodurans R1. Appl Environ Microbiol 66:2006–2011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fredrickson JK, Zachara JM, Balkwill DL, Kennedy D, Li SM, Kostandarithes HM, Daly MJ, Romine MF, Brockman FJ (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the hanford site, washington state. Appl Environ Microbiol 70:4230–41

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gadd GM (2000) Bioremedial potential of microbial mechanism of metal mobilization and immobilization. Curr Opin Biotechnol 11:271–279

    Article  CAS  PubMed  Google Scholar 

  • Gaur R, Grover T, Kapoor S, Khare SK (2010) Purification and characterization of a solvent stable aminopeptidase from Pseudomonas aeruginosa: cloning and analysis of aminopeptidase gene conferring solvent stability. Process Biochem 45:757–764

    Article  CAS  Google Scholar 

  • Gieseke A, Purkhold U, Wagne RM, Amann R, Schramm A (2001) Community structure and activity dynamics of nitrifying bacteria in a phosphate-removing biofilm. Appl Environ Microbiol 67(3):1351–1362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Giovanlla P, Cabral L, Costa AP, de Oliveira Camargo FA, Gianello C, Beneto FM (2017) Metal resistance mechanisms in Gram-negative bacteria and their potential to remove Hg in the presence of other metals. Ecotoxicol Environ Saf 140:162–169

    Article  CAS  Google Scholar 

  • Giovanlla P, Gabriela ALV, Igor VRO, Elisa PP, Bruno de Jesus F, Lara DS (2020) Metal and organic pollutants bioremediation by extremophile microorganisms. J Hazard Mater 382:121024. https://doi.org/10.1016/j.jhazmat.2019.121024

    Article  CAS  Google Scholar 

  • Gomes J, Steiner W (2004) The biocatalytic potential of extremophiles and extremozymes. Food Technol Biotechnol 42:223–235

    CAS  Google Scholar 

  • Gomez-Silvan C, Molina-Munoz M, Poyatos JM, Ramos A, Hontoria E, Rodelas B, Gonzalez-Lopez J (2010) Structure of archaeal communities in membrane-bioreactor submerged-biofilter wastewater treatment plants. Bioresour Technol 101:2096–2105

    Article  CAS  PubMed  Google Scholar 

  • Goyer RA (1997) Toxic and essential metal interactions. Annu Rev Nutr 17:37–50

    Article  CAS  PubMed  Google Scholar 

  • Gray ND, Miskin IP, Kornilova O, Curtis TP, Head IM (2002) Occurrence and activity of Archaea in aerated activated sludge wastewater treatment plants. Environ Microbiol 4:158–168

    Article  PubMed  Google Scholar 

  • Green SJ, Praksh O, Jasrotia P, Overholt WA, Cardenas E, Hubbard D et al (2012) Denitrifying bacteria from the genus Rhodanobacter dominate bacterial communities in the highly contaminated subsurface of a nuclear legacy waste site. Appl Environ Microbiol 78:1039–1047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta RC (2009) Handbook of toxicology of chemical warfare agents. Academic Press, San Diego

    Google Scholar 

  • Haferburg G, Merten D, Buchel G, Kothe E (2007) Biosorption of metal and salt tolerant microbial isolates from a former uranium mining area. Their impact on changes in rare earth element patterns in acid mine drainage. J Basic Microbiol 47:474–484

    Article  CAS  PubMed  Google Scholar 

  • Harayama S, Kishira H, Kasai Y, Shutsubo K (1999) Petroleum biodegradation in marine environments. J Mol Microbiol Biotechnol 1:63–70

    CAS  PubMed  Google Scholar 

  • Hassan HA, Aly AA (2018) Isolation and characterization of three novel catechol 2,3-dioxygenase from three novel haloalkaliphilic BTEX-degrading Pseudomonas strains. Int J Biol Macromol 106:1107–1114

    Article  CAS  PubMed  Google Scholar 

  • Hedlund BP, Dodsworth JA, Murugapiran SK, Rinkec C, Woyke T (2014) Impact of single-cell genomics and metagenomics on the emerging view of extremophile “microbial dark matter”. Extremophiles 18:865–875

    Article  CAS  PubMed  Google Scholar 

  • Hegazy AK, Emam MH (2011) Accumulation and soil-to-plant transfer of radionuclides in the Nile Delta coastal black sand habitats. Int J Phytoremediation 13:140–155

    Article  CAS  PubMed  Google Scholar 

  • Hiblot J, Gotthard G, Chabriere E, Elias M (2012) Characterization of the organophosphate hydrolase catalytic activity of SsoPox. Sci Rep 2:779

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hiblot J, Gotthard G, Elias M, Chabriere E (2013) Differential active site loop conformations mediate promiscuous activities in the Lactonase SsoPox. PLoS One 8:e75272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Holker U, Schmiers H, Grosse S, Winkelhofer M, Polsakiewicz M, Ludwig S et al (2002) Solubilization of low-rank coal by Trichoderma atroviride: evidence for the involvement of hydrolytic and oxidative enzymes by using 14C-labelled lignite. J Ind Microbiol Biotechnol 28:207–212

    Article  CAS  PubMed  Google Scholar 

  • Horne I, Sutherland TD, Harcourt R, Russell R, Oakeshott JG (2002) Identification of an opd (Oraganophophate degrading) gene in an Agrocbabcterium isolate. Appl Environ Microbiol 68:3371–3376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacquet P, Daude D, Bzderenga J, Masson P, Elias M, Chabriere E (2016) Current and emerging strategies for organophosphate decontamination: special focus on hyperstable enzymes. Environ Sci Pollut Res 23:8200–8218

    Article  CAS  Google Scholar 

  • Jaipieam S, Visuthismajarn P, Sutheravut P, Siriwong W, Thoumsang S, Borjar M, Robson M (2009) Organophosphate pesticide residues in drinking water from artesian Wells and health risk assessment of agricultural communities, Thailand. Hum Ecol Risk Assess 15:1304–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Jesus HE, Peixoto RS, Cury JC, van Elsas JD, Rosado AS (2015) Evaluation of soil bioremediation techniques in an aged diesel spill at the Antarctic Peninsula. Appl Microbiol Biotechnol 99:10815–10827

    Article  PubMed  CAS  Google Scholar 

  • John SG, Ruggiero CE, Hersman LE, Tung CS, Nu MP (2001) Siderophore mediated plutonium accumulation by Microbacterium flavescens (JG-9). Environ Sci Technol 35:2942–2948

    Article  CAS  PubMed  Google Scholar 

  • Karan R, Singh RKM, Kapoor S, Khare SK (2011) Gene identification and molecular characterization of solvent stable protease from a moderately haloalkaliphilic bacterium Geomicrobium sp. EMB2. J Microbiol Biotechnol 21:129–135

    Article  CAS  PubMed  Google Scholar 

  • Kaur A, Pan M, Meislin M, Facciotti MT, El-Gewely R, Baliga NS (2006) A systems view of haloarchaeal strategies to withstand stress from transition metals. Genome Res 16:841–854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawakami Y, Hayashi N, Ema M, Nakayama M (2007) Effects of divalent cations on Halobacterium salinarum cell aggregation. J Biosci Bioeng 104:42–46

    Article  CAS  PubMed  Google Scholar 

  • Keasling JD, Van Dien SJ, Trelstad P, Renninger N, McMahon K (2000) Application of polyphosphate metabolism to environmental and biotechnological problems. Biochemistry (Mosc) 65:324–331

    CAS  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Angar Y, Gana ML (2015) Isolation of an extremely halophilic archaeon Natrialba sp. C21 able to degrade aromatic compounds and to produce stable biosurfactant at high salinity. Extremophiles 19:1109–1120

    Article  CAS  PubMed  Google Scholar 

  • Khemili-Talbi S, Kebbouche-Gana S, Akmoussi-Toumi S, Gana ML, Lahiani S, Angar Y, Ferrioune I (2017) Biodegradation of petroleum hydrocarbon and biosurfactant production by an extremely halophilic archaea Halovivax sp. A21. Algerian J Environ Sci Technol 3:56–64

    Google Scholar 

  • Kim BK, Pihl TD, Reeve JN, Daniels L (1995) Purification of the copper response extracellular proteins secreted by the copper-resistant methanogen Methanobacterium bryantii BKYH and cloning, sequencing, and transcription of the gene encoding these proteins. J Bacteriol 177:7178–7185

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim SJ, Koh DC, Park SJ, Cha IT, Park JW, Na JH et al (2012) Molecular analysis of spatial variation of iron-reducing bacteria in riverine alluvial aquifers of the Mankyeong River. J Microbiol 50:207–217

    Article  CAS  PubMed  Google Scholar 

  • Kim HS, Kim YJ, Seo YR (2015) An overview of carcinogenic heavy metal: molecular toxicity mechanism and prevention. J Cancer Prev 20:232–240

    Article  PubMed  PubMed Central  Google Scholar 

  • Koga Y, Moril H (2007) Biosynthesis of ether-type polar lipids in archaea and evolutionary considerations. Microbiol Mol Biol Rev 1:97–120

    Article  CAS  Google Scholar 

  • Korashy HM, Attafi IM, Famulski KS, Bakheet SA, Hafez MM, Alsaad AMS, Al-Ghadeer ARM (2017) Gene expression profiling to identify the toxicities and potentially relevant human disease outcomes associated with environmental heavy metals exposure. Environ Pollut 221:64–74

    Article  CAS  PubMed  Google Scholar 

  • Kulichevskaya IS, Milekhina EI, Borzenkov IA, Zvyagintseva IS, Belyaev SS (1992) Oxidation of petroleum hydrocarbons by extremely halophilic archaebacteria. Microbiology 60:596–601

    Google Scholar 

  • Kumar S, Chaurasia P, Kumar A (2016) Isolation and characterization of microbial strains from textile industry effluents of Bhilwara, India: analysis with bioremediation. J Chem Pharm Res 8:143–150

    Google Scholar 

  • Kumraz A, Singh S, Singh OV (2007) Bioremediation of radionuclides: emerging technologies. OMICS 11:295–304

    Article  CAS  Google Scholar 

  • Kuznetsov VD, Zaitseva TA, Valulenko LV, Filippova SN (1992) Streptomyces albiaxalis sp. nov.: a new petroleum hydrocarbon-degrading species of thermo- and halotolerant Streptomyces. Microbiology 61:62–67

    Google Scholar 

  • Law GT, Geissler A, Lloyd JR, Livens FR, Boothman C, Begg JD, Denecke MA, Rothe J, Dardenne K, Burke IT, Charnock JM, Morris K (2010) Geomicrobiological redox cycling of the transuranic element neptunium. Environ Sci Technol 44:8924–9

    Article  CAS  PubMed  Google Scholar 

  • Lee TH, Byun IG, Kim YO, Hwang IS, Park TJ (2006) Monitoring biodegradation of diesel fuel in bioventing processes using in situ respiration rate. Water Sci Technol 53:263–272

    Article  CAS  PubMed  Google Scholar 

  • Li A, Shao Z (2014) Biochemical characterization of a haloalkane dehalogenase DadB from Alcanivorax dieselolei B-5, PLoS One, 9(2):e89144. https://doi.org/10.1371/journal.pone.0089144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lin CC, Lin HL (2005) Remediation of soil contaminated with the heavy metal (Cd2+). J Hazard Mater 122:7–15

    Article  CAS  PubMed  Google Scholar 

  • Lloyd JR, Macaskie LE (1996) A novel Phosphorimager-based technique for monitoring the microbial reduction of technetium. Appl Environ Microbiol 62:578–582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR, Macaskie LE (2000) Bioremediation of radionuclide-containing waste waters. In: Lovely DR (ed) Environmental microbe-metal interactions. ASM Press, Washington, DC, pp 277–327

    Google Scholar 

  • Lloyd JR, Ridley J, Khizniak T, Lyalikova NN, Macaskie LE (1999) Reduction of technetium by Desulfavibrio desulfuricans: biocatalyst characterization and use in a flowthrough bioreactor. Appl Environ Microbiol 65:2691–2696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lloyd JR, Leang C, Hodges Myerson AL, Coppi MV, Cuifo S, Methe B et al (2003) Biochemical and genetic characterization of PpcA, a periplasmic c-type cytochrome in Geobacter sulfurreducens. Biochem J 369:153–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacElroy RD (1974) Some comments on the evolution of extremophiles. Biosystems 6:74–75

    Article  Google Scholar 

  • Madhavi GN, Mohini DD (2012) Review paper on parameters affecting bioremediation. Int J Life Sci Pharma Res 2:77–80

    Google Scholar 

  • Margesin R, Schinner F (1999) Biological decontamination of oil spills in cold environments. J Chem Technol Biotechnol 74:381–389

    Article  CAS  Google Scholar 

  • Marques CR (2018) Extremophilic microfactories: applications in metal and radionuclide bioremediation. Front Microbiol 9:1191. https://doi.org/10.3389/fmicb.2018.01191

    Article  PubMed  PubMed Central  Google Scholar 

  • McDaniel CS, Harper LL, Wild JR (1988) Cloning and sequencing of a plasmid-borne gene (opd) encoding a phosphotriesterase. J Bacteriol 170:2306–2311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merone L, Mandrich L, Rossi M, Manco G (2005) A thermostable phosphotriesterase from the archaeon Sulfolobus solfataricus: cloning, overexpression and properties. Extremophiles 9:297–305

    Article  CAS  PubMed  Google Scholar 

  • Mi S, Song J, Lin J, Che Y, Zheng H, Lin J (2011) Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol 49:890–901

    Article  CAS  PubMed  Google Scholar 

  • Mohner M, Lindtner M, Otten H, Gille HG (2006) Leukemia and exposure to ionizing radiation among German uranium miners. Am J Ind Med 49:238–248

    Article  PubMed  CAS  Google Scholar 

  • Mulligana CN, Yong RN (2004) Natural attenuation of contaminated soils. Environ Int 30:587–601

    Article  CAS  Google Scholar 

  • Naik S, Furtado I (2014) Equilibrium and kinetics of adsorption of Mn+2 by Haloarchaeon Halobacterium sp. GUSF (MTCC3265). Geomicrobiol J 31:708–715

    Article  CAS  Google Scholar 

  • Najera-Fernandez C, Zafrilla B, Bonete M, Martinez-Espinosa R (2012) Role of the denitrifying haloarchaea in the treatment of nitrite-brines. Int Microbiol 15:111–119. https://doi.org/10.2436/20.1501.01.164

    Article  CAS  PubMed  Google Scholar 

  • Nikolaivits E, Dimarogona M, Fokialakis N, Topakas E (2017) Marine-derived biocatalysts: importance, accessing and application in aromatic pollutant bioremediation. Front Microbiol 8:265. https://doi.org/10.3389/fmicb.2017.00265

    Article  PubMed  PubMed Central  Google Scholar 

  • Novak HR, Sayer C, Panning J, Littlechild JA (2013) Characterization of an 1-haloacid dehalogenase from the marine psychrophile Psychromonas ingrahamii with potential industrial application. Mar Biotechnol 15:695–705

    Article  CAS  Google Scholar 

  • Orellana R, Macaya C, Bravo G, Dorochesi F, Cumsille A, Valencia R et al (2018) Living at the frontiers of life: extremophiles in Chile and their potential for bioremediation. Front Microbiol 9:2309. https://doi.org/10.3389/fmicb.2018.02309

    Article  PubMed  PubMed Central  Google Scholar 

  • Oren A (2008) Microbial life at high salt concentrations: phylogenetic and metabolic diversity. Saline Syst 4:2. https://doi.org/10.1186/1746-1448-4-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oren A (2010) Industrial and environmental applications of halophilic microorganisms. Environ Technol 31:825–834

    Article  CAS  PubMed  Google Scholar 

  • Ospina-Alvarez N, Glaz L, Dmowski K, Krasnodebska-Ostrega B (2014) Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environ Chem Lett 12:435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • de Paiva Magalhaes D, da Costa Marques MR, Baptista DF, Buss DF (2015) Metal bioavailability and toxicity in freshwaters. Environ Lett 13:69–87

    Article  CAS  Google Scholar 

  • Park C, Park W (2018) Survival and energy producing strategies of alkane degraders under extreme conditions and their biotechnological potential. Front Microbiol 9:1–15. https://doi.org/10.3389/fmicb.2018.01081

    Article  Google Scholar 

  • Patel RK, Dodia MS, Joshi RH, Singh SP (2006) Purification and characterization of alkaline protease from a newly isolated haloalkaiphilic Bacillus sp. Process Biochem 41:2002–2009

    Article  CAS  Google Scholar 

  • Pettit RK (2011) Culturability and secondary metabolite diversity of extreme microbes: expanding contribution of deep sea and deep-sea vent microbes of natural product discovery. Mar Biotechnol 13:1–11

    Article  CAS  Google Scholar 

  • Pignolet L, Auvray F, Fonsny K, Capot F, Moureau Z (1989) Role of various microorganisms on Tc behaviour in sediments. Health Phys 57:791–800

    Article  CAS  PubMed  Google Scholar 

  • Pinto AJ, Raskin I (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7(8):e43093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    Article  CAS  Google Scholar 

  • Poirier L, Brun L, Jacquet P, Lepolard C, Armstrong N, Torre C et al (2017) Enzymatic degradation of organophosphorus insecticides decrease toxicity in planarians and enhances survival. Sci Rep 7:15194. https://doi.org/10.1038/151598-017-15209-8

    Article  PubMed  PubMed Central  Google Scholar 

  • Popescu G, Dumitru L (2009) Biosorption of some heavy metals from media with high salt concentrations by halohilic archaea. Biotechnol Biotechnol Equip 23:791–795

    Article  Google Scholar 

  • Praksh D, Gabani P, Chandel AK, Ronen Z, Singh OV (2013) Bioremediation: a genuine technology to remediate radionuclides from the environment. Microbiol Biotechnol 6:349–360

    Article  CAS  Google Scholar 

  • Prasad MNV (2016) Recovery of resources from biowaste for pollution prevention. In: Prasad MNV (ed) Environmental Materials and Waste: Resources Recovery and Pollution Prevention, Elsevier, pp 1-19. https://doi.org/10.1016/B978-0-12-803837-6.0001-9

  • Prince R (1993) Petroleum spill bioremediation in marine environment. Crit Rev Microbiol 19:217–242

    Article  CAS  PubMed  Google Scholar 

  • Prince RC, McFarlin KM, Butler JD, Febbo EJ, Wang FCY, Nedwed TJ (2013) The primary biodegradation of dispelled crude oil in the sea. Chemosphere 90:521–526

    Article  CAS  PubMed  Google Scholar 

  • Rasmussen LD, Sorensen SJ, Turner RR, Barkay T (2000) Application of a mer-lux biosensor for estimating bioavailable mercury in soil. Soil Biol Biochem 32:639–649

    Article  CAS  Google Scholar 

  • Remy B, Plener L, Poirier L, Elias M, Daude D, Chabriere E (2016) Harnessing hyperthermostable lactonase from Sulfolobus solfataricus for biotechnological applications. Sci Rep 6:37780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rothschild RD, Mancinelli RL (2001) Life in extreme environments. Nature 409:1092–1101

    Article  CAS  PubMed  Google Scholar 

  • Saito A, Iwabuchi T, Harayama S (2000) A novel phenanthrene dioxygenase from Nocardioides sp. strain KP7: expression in Escherichia coli. J Bacteriol 182:2134–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Salam LB, Obayori SO, Nwaokorie FO, Suleiman A, Mustapha R (2017) Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res Int 24:7139–7159

    Article  CAS  PubMed  Google Scholar 

  • Santos F, Moreno-Paz M, Meseguer I, Lopez C, Rossello-Mora R, Parro V, Anton J (2011) Metatranscriptomic analysis of extremely halophilic viral communities. ISME J 5:1621–1633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Satyanarayana T, Raghukumar C, Shivaji S (2005) Extremophilic microbes: diversity and perspectives. Curr Sci 89:78–90

    Google Scholar 

  • Sayler GS, Ripp S (2000) Field applications of genetically engineered microorganisms for bioremediation processes. Curr Opin Biotechnol 11:286–289

    Article  CAS  PubMed  Google Scholar 

  • Schelert J, Rudrappa D, Johnson T, Blum P (2013) Role of MerH in mercury resistance in the archaeon Sulfobolus solfataricus. Microbiology (United Kingdom) 159(pt_6):1198–1208. https://doi.org/10.1099/mic.0.065854-0

    Article  CAS  Google Scholar 

  • Schramm A, Santegoeds CM, Nielsen HK, Ploug H, Wagner M, Pribyl M, Wanner J, Amann R, de Beer D (1999) On the occurrence of anoxic microniches, denitrification, and sulfate reduction in aerated activated sludge. Appl Environ Microbiol 65:4189–4196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schuraldi C, Rosa M (2002) The production of biocatalysts and biomolecules from extremophiles. Trends Biotechnol 20:515–521

    Article  Google Scholar 

  • Sharma PK, Balkwill DL, Frenkel A (2000) A new Klebsiella planticola strain (Cd-1) grows anaerobically at high cadmium concentrations and precipitates cadmium sulphide. Appl Environ Microbiol 66:3083–3087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Showalter AR, Szymanowski JES, Fein JB, Bunker BA (2016) An x-ray absorption spectroscopy study of Cd binding onto a halophilic archaeon. J Phys Conf Ser 712(1):012079

    Article  CAS  Google Scholar 

  • Siddiquee S, Rovina K, Azad S, Naher L, Suryani S (2015) Heavy metal contaminants removal from wastewater using the potential filamentous fungi biomass: a review. J Microb Biochem Technol 7:384–393

    Article  CAS  Google Scholar 

  • Siles JA, Margesin R (2018) Insights into microbial communities mediating the bioremediation of hydrocarbon-contaminated soil from an Alpine former military site. App Microbiol Biotechnol 102:4409–4421

    Article  CAS  Google Scholar 

  • Singh BK, Walker A (2005) Microbial degradation of organophosphorus compounds. FEMS Microbiol Rev 30:428–471

    Article  CAS  Google Scholar 

  • Sivaperumal P, Kamala K, Rajaram R (2017) Bioremediation of industrial waste through enzymes producing marine microorganisms. Adv Food Nutr Res 80:165–179

    Article  CAS  PubMed  Google Scholar 

  • Smith CJ, Osborn AM (2009) Advantages and limitations of quantitative PCR (Q-PCR)-based approaches in microbial ecology. FEMS Microbiol Ecol 67:6–20

    Article  CAS  PubMed  Google Scholar 

  • Souza EC, Vessoni-Penna TC, Olivera RP (2014) Biosurfactant-enhanced hydrocarbon bioremediation: an overview. Int Bioderior Biodegrad 89:88–94

    Google Scholar 

  • Srivastava P, Kowshik M (2013) Mechanisms of metal resistance and homeostasis in haloarchaea. Archaea 1:1–16

    Article  CAS  Google Scholar 

  • Srivastava P, Bragança J, Ramanan SR, Kowshik M (2013) Synthesis of silver nanoparticles using haloarchaeal isolate Halococcus salifodinae BK3. Extremophiles 17:821–831

    Article  CAS  PubMed  Google Scholar 

  • Takeuchi F, Iwahori K, Kamimura K, Negishi A, Maeda T, Sugio T (2001) Volatilization of mercury under acidic conditions from mercury-polluted soil by a mercury-resistant Acidithiobacilus ferrooxidans SUG 2-2. Biosci Biotechnol Biochem 65:1981–1986

    Article  CAS  PubMed  Google Scholar 

  • Tamponnet C, Declerck S (2008) Radionuclide pollution is a worldwide problem that arises from human activities. J Environ Radioact 99:773–774

    Article  CAS  PubMed  Google Scholar 

  • Tango MSA, Islam MR (2002) Potential of extremophiles or biotechnological and petroleum applications. Energy Sources 24:543–559

    Article  CAS  Google Scholar 

  • Thapa B, Kumar AKC, Ghimire A (2012) A review on bioremediation of petroleum hydrocarbon contaminants in soil. Kathmandu Univ J Sci Eng Technol 8:164–170

    Article  Google Scholar 

  • Tindall BJ, Ross HNM, Grant WD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov., two new general of haloalkaliphilic archaebacteria. Syst Appl Microbiol 5:41–57

    Article  Google Scholar 

  • Torregrosa-Crespo J, Martinez-Espinosa R, Esclapez J, Bautista V, Pire C, Camacho M et al (2016) Anaerobic metabolism in Haloferax genus: denitrification as case of study. In: Poole RK (ed) Advances in microbial physiology, vol 68, 1st edn. Oxford Academic Press, Oxford, pp 41–85. https://doi.org/10.1016/bs.ampbs.2016.02.001

    Chapter  Google Scholar 

  • Tse H, Comba M, Alaee M (2004) Methods or the determination of organophosphate insecticide in water, sediments and biota. Chemosphere 54:41–47

    Article  CAS  PubMed  Google Scholar 

  • U.S. Enviroenmental Protetion Agency (1986) Test method for evaluating solid waste, SW-846, vol 1A, 3rd edn. US EPA, Washington, DC

    Google Scholar 

  • Valentine D (2007) Adaptations to energy stress dictate the ecology and evolution of the Archaea. Nat Rev Microbiol 5:316–323. https://doi.org/10.1038/nrmicro1619

    Article  CAS  PubMed  Google Scholar 

  • Varjani SJ, Gnansounou E, Pandey A (2017) Comprehensive review on toxicity of persistent organic pollutant from petroleum refinery waste and their degradation by microorganisms. Chemosphere 188:280–291

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Mao J, Zhang Z, Tang Q, Xie Y, Zhu J, Zhang L, Liu Z, Shi Y, Goodfellow M (2010a) Deinococcus wulumuqiensis sp. nov. and Deincoccus xibeiensis sp. nov., isolated from radiation-polluted soil. Int J Syst Evol Microbiol 60:2006–2010

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Wang W, Lai Q, Shao Z (2010b) Gene diversity of CYO153A and AlkB alkane hydroxylases in oil-degrading bacteria isolated from the Atlantic Ocean. Environ Microbiol 12:1230–1242

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Feng X, Anderson CW, Xing Y, Shang L (2012) Remediation of mercury contaminated sites-a review. J Hazard Mater 221–222:1–18

    PubMed  Google Scholar 

  • Wildung RE, Gorby YA, Krupka KM, Hess NJ, Li SW, Plymale AE et al (2000) Effect of electron donor and solution chemistry on products of dissimilatory reduction of technetium by Shewanella putrefaciens. Appl Environ Microbiol 66:2451–2460

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese CR, Fox GE (1977) Phylogenetic structure of the prokaryotic domain: the primary kingdom. Proc Natl Acad Sci 74:558–5090

    Article  Google Scholar 

  • Wu WM, Carley J, Fienen M, Mehlhorn T, Lowe K, Nyman J et al (2006) Pilot-scale in situ bioremediation of uranium in a highly contaminated aquifer. 1. Conditioning of a treatment zone. Environ Sci Technol 40:3978–3985

    Article  CAS  PubMed  Google Scholar 

  • Wu G, Kang H, Zhang X, Shao H, Chu L, Ruan C (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8

    Article  CAS  PubMed  Google Scholar 

  • Xie S, Yng J, Chen C, Zhang X, Wang Q, Zhang C (2008) Study on biosorption kinetics and thermodynamics of uranium by Citrobacter freudii. J Environ Radioact 99:126–133

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Zhou N (2016) Microbial remediation of aromatics-contaminated soil. Front Environ Sci Eng 11:1. https://doi.org/10.1007/s11783-017-0894-x

    Article  CAS  Google Scholar 

  • Yakimov MM, Guiliano L, Bruni V, Scarfi S, Golyshin PN (1999) Characterization of Antarctic hydrocarbon-degrading bacteria capable of producing bioemulsifiers. Microbiologica (Pavia) 22:249–256

    CAS  Google Scholar 

  • Zhang J, Cao X, Xin Y, Xue S, Zhang W (2013) Purification and characterization of a dehalogenase from Pseudomonas stutzeri DEH130, isolated from marine sponge Hymeniacidon perlevis. World J Microbiol Biotechnol 29:1791–1799

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, XinY CX, Xue S, Zhang W (2014) Purification and characterization of 2-haloacid dehalogenase from marine bacterium Paracoccus sp DEH130 isolated from marine sponge Hymeniacidon perlevis. J Ocean Univ China 13:91–96

    Article  CAS  Google Scholar 

  • Zhao D, Kumar S, Zhou J, Wang R, Li M, Xiang H (2017) Isolation and complete genome sequence of Halorientalis hydrocaebonoclasticus sp. nov., a hydrocarbon-degrading haloarchaon. Extremophiles 21:1081–1090

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Han Z, Bai G, Zhuang G, Shim H (2010) Progress in decontamination by halophilic microorganisms in saline wastewater and soil. Environ Pollut 158:1119–1126

    Article  CAS  PubMed  Google Scholar 

  • Zvyagintseva IS, Belyaev IA, Borzenkov IA, Kostrikina NA, Milekhina EI, Ivanov MV (1995) Halophilic archaebacteria from the Kalamkass oil field. Microbiology 64:67–71

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kaushik, S., Alatawi, A., Djiwanti, S.R., Pande, A., Skotti, E., Soni, V. (2021). Potential of Extremophiles for Bioremediation. In: Panpatte, D.G., Jhala, Y.K. (eds) Microbial Rejuvenation of Polluted Environment. Microorganisms for Sustainability, vol 25. Springer, Singapore. https://doi.org/10.1007/978-981-15-7447-4_12

Download citation

Publish with us

Policies and ethics