Skip to main content
Log in

Metal bioavailability and toxicity in freshwaters

  • Review
  • Published:
Environmental Chemistry Letters Aims and scope Submit manuscript

Abstract

Many factors influence metal speciation in freshwaters. Metal species that are more soluble are considered more bioavailable and toxic. However, evaluation of metal speciation in waters is a complex task. Moreover, the quantification of total and dissolved metals is not sufficient to determine toxic effects on the biota. Here, we review environmental parameters that influence metal bioavailability: mathematical models to predict toxicity, and the biological tools used to evaluate contamination in freshwaters ecosystems. The major points are the following: (1) we discuss many “exceptions” of chemical parameters that are deemed to increase metal bioavailability or to protect against metal uptake, such as pH and water hardness. We provide evidence of organisms and environmental conditions that break these rules and therefore should be considered when predicting impairment by metals. (2) We discuss the advances in mathematical modelling as a proxy to metal toxicity. (3) We discuss advantages and limitations of using multiple biological tools to assess toxicity, such as the use of biomarkers and microorganisms, zooplankton, benthic macroinvertebrates and fish communities. Biomarkers are efficient in detecting low concentrations of metals in a short-term exposition. Changes on biological community structure and composition are good tools to detect high metal concentration or chronic concentration in a long-term exposition. The use of multiple tools including chemical analyses and a set of biological indicators is recommended for a more accurate evaluation of metal impacts on freshwater systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ahner BA, Lee JG, Price NM, Morel FMM (1998) Phytochelatin concentrations in the equatorial Pacific. Deep Sea Res Part I 45:1779–1796

    CAS  Google Scholar 

  • Alcedo JF, Wetterhahn KE (1990) Chromium toxicity and carcinogenesis. Int Rev Exp Pathol 31:85

    CAS  Google Scholar 

  • Alcorlo P, Otero M, Crehuet M, Baltanas A, Montes C (2006) The use of the red swamp crayfish (Procambarus clarkii, Girard) as indicator of the bioavailability of heavy metals in environmental monitoring in the river Guadiamar (SW, Spain). Sci Total Environ 366:380–390

    CAS  Google Scholar 

  • Allen HE, Janssen CR (2006) Incorporating bioavailability into criteria for metals. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation. Springer, Netherlands, pp 93–105

  • Allen HE, Fu G, Deng B (1993) Analysis of acid-volatile sulfide (AVS) and simultaneously extracted metals (SEM) for the estimation of potential toxicity in aquatic sediments. Environ Toxicol Chem 12:1441–1453

    CAS  Google Scholar 

  • Al-Rub FAA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773

    Google Scholar 

  • Al-Rub FAA, El-Naas MH, Ashour I, Al-Marzouqi M (2006) Biosorption of copper on Chlorella vulgaris from single, binary and ternary metal aqueous solutions. Process Biochem 41:457–464

    CAS  Google Scholar 

  • Amiard JC, Amiard-Triquet C, Barka S, Pellerin J, Rainbow PS (2006) Metallothioneins in aquatic invertebrates: their role in metal detoxification and their use as biomarkers. Aquat Toxicol 76:160–202

    CAS  Google Scholar 

  • ANZECC, Australian and New Zealand Environment and Conservation Council and ARMCANZ, Agriculture and Resource Management Council of Australia and New Zealand (2000) Australian and New Zealand Guidelines for Fresh and Marine Water Quality. Volume 2. Aquatic Ecosystems—Rationale and Background Information. Australian Water Association, Artarmon, New South Wales, Australia; New Zealand Water and Wastes Association, Onehunga, Auckland, New Zealand

  • Atli G, Canli M (2010) Response of antioxidant system of freshwater fish Oreochromis niloticus to acute and chronic metal (Cd, Cu, Cr, Zn, Fe) exposures. Ecotoxicol Environ Saf 73:1884–1889

    CAS  Google Scholar 

  • Backhaus T, Faust M (2012) Predictive environmental risk assessment of chemical mixtures: a conceptual framework. Environ Sci Technol 46:2564–2573

    CAS  Google Scholar 

  • Baer KN, Thomas P (1990) Influence of capture stress, salinity and reproductive status on zinc associated with metallothionein like-proteins in the liver of three teleost species. Mar Environ Res 29:277–287

    CAS  Google Scholar 

  • Baken S, Degryse F, Verheyen L, Merckx R, Smolders E (2011) Metal complexation properties of freshwater dissolved organic matter are explained by its aromaticity and by anthropogenic ligands. Environ Sci Technol 45:2584–2590

    CAS  Google Scholar 

  • Berry WJ, Hansen DJ, Boothman WS, Mahony JD, Robson DL, Di Toro DM, Corbin JM (1996) Predicting the toxicity of metal-spiked laboratory sediments using acid-volatile sulfide and interstitial water normalizations. Environ Toxicol Chem 15:2067–2079

    CAS  Google Scholar 

  • Bezerra PSS, Takiyama LR, Bezerra CWB (2009) Complexation of metal ions by dissolved organic matter: modeling and application to real systems. Acta Amazon 39:639–648

    CAS  Google Scholar 

  • Bisinoti MC, Jardim WF (2004) Behavior of methylmercury in the environment. Quim Nova 27:593–600

    CAS  Google Scholar 

  • Bjerregaard P, Andersen O (2007) Ecotoxicology of metals: sources, transport, and effects in the ecosystem. In: Gunnar FN, Bruce AF, Monica N, Lars TF (eds) Handbook on the toxicology of metals, 3rd edn. Academic Press, Burlington, pp 251–277

    Google Scholar 

  • Blackmore G, Wang WX (2002) Uptake and efflux of Cd and Zn by the green mussel Perna viridis after metal preexposure. Environ Sci Technol 36:989–995

    CAS  Google Scholar 

  • Borgmann U, Norwood WP, Dixon DG (2004) Re-evaluation of metal bioaccumulation and chronic toxicity in Hyalella azteca using saturation curves and the biotic ligand model. Environ Pollut 13:469–484

    Google Scholar 

  • Brauner CJ, Wood C (2002a) Ionoregulatory development and the effect of chronic silver exposure on growth, survival, and sublethal indicators of toxicity in early life stages of rainbow trout (Oncorhynchus mykiss). J Comp Physiol B 172:153–162

    Google Scholar 

  • Brauner CJ, Wood CM (2002b) Effect of long-term silver exposure on survival and ionoregulatory development in rainbow trout (Oncorhynchus mykiss) embryos and larvae, in the presence and absence of added dissolved organic matter. Comp Biochem Physiol C 133:161–173

    Google Scholar 

  • Brauner CJ, Wilson J, Kamunde C, Wood CM (2003) Water chloride provides partial protection during chronic exposure to waterborne silver in rainbow trout (Oncorhynchus mykiss) embryos and larvae. Physiol Biochem Zool 76:803–815

    CAS  Google Scholar 

  • Buss DF, Carlise DM, Chon TS, Culp J, Harding JS et al (2015) Stream biomonitoring using macroinvertebrates around the globe: a comparison of large-scale programs. Environ Monit Assess. DOI 10.1007/s10661-014-4132-8

  • Butler BA, Ranville JF, Ross PE (2008) Direct versus indirect determination of suspended sediment associated metals in a mining-influenced watershed. Appl Geochem 23:1218–1231

    CAS  Google Scholar 

  • Campbell PGC (1995) Interactions between trace metals and aquatic organisms: a critique of the free-ion activity model. In: Tessier A, Turner DR (eds) Metal speciation and bioavailability in aquatic systems. Wiley, Chichester, pp 45–102

    Google Scholar 

  • Carney Almroth B, Albertsson E, Sturve J, Förlin L (2008) Oxidative stress, evident in antioxidant defences and damage products, in rainbow trout caged outside a sewage treatment plant. Ecotoxicol Environ Saf 70:370–378

    CAS  Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment (2007) A protocol for the derivation of water quality guidelines for the protection of aquatic life. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • CCME, Canadian Council of Ministers of the Environment (2012) Metal mining environmental effects monitoring (EEM) technical guidance document. Canadian Council of Ministers of the Environment, Winnipeg

    Google Scholar 

  • Čelechovská O, Svobodová Z, Žlábek V, Macharáčková B (2007) Distribution of metals in tissues of the common carp (Cyprinus carpio L.). Acta Vet Brno 76:93–100

    Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC et al (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25:335–347

    CAS  Google Scholar 

  • Chen ZZ, Zhu L, Yao K, Wang XJ, Ding JN (2009) Interaction between calcium and lead affects to embryo of zebrafish (Danio rerio). Huan Jing Ke Xue 30:1205–1209

    CAS  Google Scholar 

  • Clemens S (2001) Molecular mechanisms of plant metal tolerance and homeostasis. Planta 212:475–486

    CAS  Google Scholar 

  • Clements WH (2004) Small-scale experiments support causal relationships between metal contamination and macroinvertebrate community responses. Ecol Appl 14:954–967

    Google Scholar 

  • Clements WH, Kiffney PM (1994) Assessing contaminant effects at higher levels of biological organization. Environ Toxicol Chem 13:357–359

    Google Scholar 

  • Clements WH, Cherry DS, Hassel JHV (1992) Assessment of the impact of heavy metals on benthic communities at the Clinch River (Virginia): evaluation of an index of community sensitivity. Can J Fish Aquat Sci 49:1686–1694

    Google Scholar 

  • Cornelis R, Nordberg M (2007) General chemistry, sampling, analytical methods, and speciation. In. In: Gunnar FN, Bruce AF, Monica N, Lars TF (eds) Handbook on the toxicology of metals, 3rd edn. Academic Press, Burlington, pp 197–208

    Google Scholar 

  • Da Cruz ACS, Couto BC, Nascimento IA et al (2007) Estimation of the critical effect level for pollution prevention based on oyster embryonic development toxicity test: the search for reliability. Environ Int 33:589–595

    Google Scholar 

  • De Schamphelaere KAC, Janssen CR (2004) Development and field validation of a biotic ligand model predicting chronic copper toxicity to Daphnia magna. Environ Toxicol Chem 23:1365–1375

    Google Scholar 

  • De Schamphelaere KAC, Canli M, Van Lierde V et al (2004) Reproductive toxicity of dietary zinc to Daphnia magna. Aquat Toxicol 70:233–244

    Google Scholar 

  • De Schamphelaere KA, Lofts S, Janssen CR (2005) Bioavailability models for predicting acute and chronic toxicity of zinc to algae, daphnids, and fish in natural surface waters. Environ Toxicol Chem 24:1190–1197

    Google Scholar 

  • Di Toro DM, Allen HE, Bergman HL, Meyer JS, Paquin PR, Santore RC (2001) Biotic ligand model of the acute toxicity of metals. 1. Technical basis. Environ Toxicol Chem 20:2383–2396

    Google Scholar 

  • Duong TT, Morin S, Herlory O, Feurtet-Mazel A, Coste M, Boudou A (2008) Seasonal effects of cadmium accumulation in periphytic diatom communities of freshwater biofilms. Aquat Toxicol 90:19–28

    CAS  Google Scholar 

  • El-Enany AE, Issa AA (2001) Proline alleviates heavy metal stress in Scenedesmus armatus. Folia Microbiol 46:227–230

    CAS  Google Scholar 

  • English TE, Storey KB (2003) Freezing and anoxia stresses induce expression of metallothionein in the foot muscle and hepatopancreas of the marine gastropod Littorina littorea. J Exp Biol 206:2517–2524

    CAS  Google Scholar 

  • Enk M, Mathis BJ (1977) Distribution of cadmium and lead in a stream ecosystem. Hydrobiologia 52:153–158

    CAS  Google Scholar 

  • Eroglu A, Dogan Z, Kanak EG, Atli G, Canli M (2014) Effects of heavy metals (Cd, Cu, Cr, Pb, Zn) on fish glutathione metabolism. Environ Sci Pollut Res 21:1–9

    Google Scholar 

  • Escher BI, Hermens JLM (2004) Peer reviewed: internal exposure: linking bioavailability to effects. Environ Sci Technol 38:455A–462A

    CAS  Google Scholar 

  • Eyong BE (2008) Distribution of arsenic and other heavy metals in sediments and their effects on benthic macroinvertebrates in the Gallinas river. Dissertation, New Mexico Highlands University San Miguel County

  • Farag AM, Woodward DF, Goldstein JN, Brumbaugh W, Meyer JS (1998) Concentrations of metals associated with mining waste in sediments, biofilm, benthic macroinvertebrates, and fish from the Coeur d’Alene River Basin, Idaho. Arch Environ Contam Toxicol 34:119–127

    CAS  Google Scholar 

  • Forsberg J, Dahlqvist R, Gelting-Nystro J, Ingri J (2006) Trace metal speciation in brackish water using diffusive gradients in thin films and ultrafiltration: comparison of techniques. Environ Sci Technol 40:3901–3905

    CAS  Google Scholar 

  • Franklin NM, Stauber JL, Lim RP, Petocz P (2002) Toxicity of metal mixtures to a tropical freshwater alga (Chlorella sp.): the effect of interactions between copper, cadmium, and zinc on metal cell binding and uptake. Environ Toxicol Chem 21:2412–2422

    CAS  Google Scholar 

  • Franklin NM, Glover CN, Nicol JA, Wood CM (2005) Calcium/cadmium interactions at uptake surfaces in rainbow trout: waterborne versus dietary routes of exposure. Environ Toxicol Chem 24:2954–2964

    CAS  Google Scholar 

  • Funes V, Alhama J, Navas JI, López-Barea J, Peinado J (2006) Ecotoxicological effects of metal pollution in two mollusc species from the Spanish South Atlantic littoral. Environ Pollut 139:214–223

    CAS  Google Scholar 

  • Gasparatos D (2013) Sequestration of heavy metals from soil with Fe–Mn concretions and nodules. Environ Chem Lett 11:1–9

    CAS  Google Scholar 

  • Gerhardt A (2000) Biomonitoring of polluted water. Trans Tech Publications Ltd.

  • Gonçalves J, Nicoloso F, Becker A, Pereira L et al (2009) Photosynthetic pigments content, δ-aminolevulinic acid dehydratase and acid phosphatase activities and mineral nutrients concentration in cadmium-exposed Cucumis sativus L. Biologia 64:310–318

    Google Scholar 

  • Goodyear KL, McNeill S (1999) Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci Total Environ 229:1–19

    CAS  Google Scholar 

  • Gower AM, Myers G, Kent M, Foulkes ME (1994) Relationships between macroinvertebrate communities and environmental variables in metal-contaminated streams in south-west England. Freshw Biol 32:199–221

    Google Scholar 

  • Grosell M, Gerdes R, Brix KV (2006) Influence of Ca, humic acid and pH on lead accumulation and toxicity in the fathead minnow during prolonged water-borne lead exposure. Comp Biochem Physiol C 143:473–483

    CAS  Google Scholar 

  • Gunkel-Grillon P, Laporte-Magoni C, Lemestre M, Bazire N (2014) Toxic chromium release from nickel mining sediments in surface waters, New Caledonia. Environ Chem Lett 12:511–516

    CAS  Google Scholar 

  • Hagger JA, Jones MB, Leonard DR, Owen R, Galloway TS (2006) Biomarkers and integrated environmental risk assessment: are there more questions than answers? Integr Environ Assess Manage 2:312–329

    CAS  Google Scholar 

  • Han J, Ma D, Quan X, Wang J, Yan Q (2005) Bioavailability of zinc in the sediment to the estuarine amphipod Grandidierella japonica. Hydrobiologia 541:149–154

    CAS  Google Scholar 

  • Has-Schön E, Bogut I, Kralik G, Bogut S, Horvatić J, Čačić I (2008) Heavy metal concentration infish tissues inhabiting waters of “Buško Blato” reservoir (Bosna and Herzegovina). Environ Monit Assess 144:15–22

    Google Scholar 

  • Heijerick DG, Janssen CR, De Coen WM (2003) The combined effects of hardness, pH, and dissolved organic carbon on the chronic toxicity of Zn to D. magna: development of a surface response model. Arcah Environ Contam Toxicol 44:0210–0217

    CAS  Google Scholar 

  • Hellou J, Ross NW, Moon TW (2012) Glutathione, glutathione S-transferase, and glutathione conjugates, complementary markers of oxidative stress in aquatic biota. Environ Sci Pollut Res 19:2007–2023

    CAS  Google Scholar 

  • Henderson R, Hobbie J, Landrigan P, Mattisoti D, Perera F, Pfttaer E et al (1987) Biological markers in environmental health research. Environ Health Perspect 7:3–9

    Google Scholar 

  • Hering JG (2009) Metal speciation and bioavailability: revisiting the ‘big questions’. Environ Chem 6:290–293

    CAS  Google Scholar 

  • Hickey CW, Golding LA (2002) Response of macroinvertebrates to copper and zinc in a stream mesocosm. Environ Toxicol Chem 21:1854–1863

    CAS  Google Scholar 

  • Ho JW (1990) Micro assay for urinary δ-aminolevulinic acid and porphobilinogen by high-performance liquid chromatography with pre-column derivatization. J Chromatogr B 527:134–139

    CAS  Google Scholar 

  • Hook SE, Fisher NS (2001a) Sublethal effects of silver in zooplankton: importance of exposure pathways and implications for toxicity testing. Environ Toxicol Chem 20:568–574

    CAS  Google Scholar 

  • Hook SE, Fisher NS (2001b) Reproductive toxicity of metals in calanoid copepods. Mar Biol 138:1131–1140

    CAS  Google Scholar 

  • Iwasaki Y, Kamo M, Naito W (2014) Testing an application of a biotic ligand model to predict acute toxicity of metal mixtures to rainbow trout. Environ Toxicol Chem. doi:10.1002/etc.2780

  • Jezierska B, Witeska M (2006) The metal uptake and accumulation infish living in polluted water. In: Twardowska I, Allen HE, Häggblom MM, Stefaniak S (eds) Soil and water pollution monitoring, protection and remediation. Springer, Netherlands, pp 107–114

    Google Scholar 

  • Jho EH, An J, Nam K (2011) Extended biotic ligand model for prediction of mixture toxicity of Cd and Pb using single metal toxicity data. Environ Toxicol Chem 30:1697–1703

    CAS  Google Scholar 

  • Kägi JHR (1993) Evolution, structure and chemical activity of class I metallothioneins: an overview. In: Suzuki KT, Imura N, Kimura M (eds) Metallothioneins III—biological roles and medical implications. Birkhäuser, Basel, pp 29–55

    Google Scholar 

  • Kamo M, Nagai T (2008) An application of the biotic ligand model to predict the toxic effects of metal mixtures. Environ Toxicol Chem 27:1479–1487

    CAS  Google Scholar 

  • Karadede H, Oymak SA, Ünlü E (2004) Heavy metals in mullet, Liza abu, and catfish, Siluris triostegus, from the Atatürk Dam Lake (Euphrates), Turkey. Environ Int 30:183–188

    CAS  Google Scholar 

  • Keteles KA, Fleeger JW (2001) The contribution of Ecdysis to the fate of copper, zinc and cadmium in grass shrimp, Palaemonetes pugio Holthius. Mar Pollut Bull 42:1397–1402

    CAS  Google Scholar 

  • Klinck J, Dunbar M, Brown S, Nichols J, Winter A, Hughes C, Playle RC (2005) Influence of water chemistry and natural organic matter on active and passive uptake of inorganic mercury by gills of rainbow trout (Oncorhynchus mykiss). Aquat Toxicol 72:161–175

    CAS  Google Scholar 

  • Komjarova I, Blust R (2009a) Application of a stable isotope technique to determine the simultaneous uptake of cadmium, copper, nickel, lead, and zinc by the water flea Daphnia magna from water and the green algae Pseudokirchneriella subcapitata. Environ Toxicol Chem 28:1739–1748

    CAS  Google Scholar 

  • Komjarova I, Blust R (2009b) Effect of Na, Ca and pH on simultaneous uptake of Cd, Cu, Ni, Pb, and Zn in the water flea Daphnia magna measured using stable isotopes. Aquat Toxicol 94:81–86

    CAS  Google Scholar 

  • Komjarova I, Blust R (2009c) Effects of Na, Ca, and pH on the simultaneous uptake of Cd, Cu, Ni, Pb and Zn in the zebrafish Danio rerio: a stable isotope experiment. Environ Sci Technol 43:7958–7963

    CAS  Google Scholar 

  • Kosolapov DB, Kuschk P, Vainshtein MB, Vatsourina AV, Wiessner A, Kästner M, Müller RA (2004) Microbial processes of heavy metal removal from carbon-deficient effluents in constructed wetlands. Eng Life Sci 4:403–411

    CAS  Google Scholar 

  • Koukal B, Rosse P, Reinhardt A, Ferrari B, Wilkinson KJ, Loizeau JL, Dominik J (2007) Effect of Pseudokirchneriella subcapitata (Chlorophyceae) exudates on metal toxicity and colloid aggregation. Water Res 41:63–70

    CAS  Google Scholar 

  • Kozlova T, Wood CM, McGeer JC (2009) The effect of water chemistry on the acute toxicity of nickel to the cladoceran Daphnia pulex and the development of a biotic ligand model. Aquat Toxicol 91:221–228

    CAS  Google Scholar 

  • Kurek E, Francis AJ, Bollag JM (1991) Immobilization of cadmium by microbial extracellular products. Arch Environ Contam Toxicol 21:106–111

    CAS  Google Scholar 

  • Laurie AD (2004) Quantitation of metallothionein mRNA from the New Zealand common bully (Gobiomorphus cotidianus) and its implications for biomonitoring. New Zeal J Mar Freshw 38:869–877

    CAS  Google Scholar 

  • Lavoie I, Lavoie M, Fortin C (2012) A mine of information: benthic algal communities as biomonitors of metal contamination from abandoned tailings. Sci Total Environ 425:231–241

    CAS  Google Scholar 

  • Lee JG, Ahner BA, Morel FMM (1996) Export of cadmium and phytochelatin by the marine diatom Thalassiosira weissflogii. Environ Sci Technol 30:1814–1821

    CAS  Google Scholar 

  • Lemaire S, Keryer E, Stein M, Schepens II et al (1999) Heavy-metal regulation of thioredoxin gene expression in Chlamydomonas reinhardtii. Plant Physiol 120:773–778

    CAS  Google Scholar 

  • Livingstone DR (2001) Contaminant-stimulated reactive oxygen species production and oxidative damage in aquatic organisms. Mar Pollut Bull 42:656–666

    CAS  Google Scholar 

  • Lock K, Janssen CR (2002) Mixture toxicity of zinc, cadmium, copper, and lead to the potworm Enchytraeus albidus. Ecotoxicol Environ Safe 52:1–7

    CAS  Google Scholar 

  • Lombardi PE, Peri SI, Verrengia Guerrero NR (2010) ALA-D and ALA-D reactivated as biomarkers of lead contamination in the fish Prochilodus lineatus. Ecotoxicol Environ Saf 73:1704–1711

    CAS  Google Scholar 

  • Macfie SM, Welbourn PM (2000) The cell wall as a barrier to uptake of metal ions in the unicellular green alga Chlamydomonas reinhardtii (Chlorophyceae). Arch Environ Contam Toxicol 39:413–419

    CAS  Google Scholar 

  • Machado AADS, Hoff MLM, Klein RD, Cordeiro GJ et al (2014) Oxidative stress and DNA damage responses to phenanthrene exposure in the estuarine guppy Poecilia vivipara. Mar Environ Res 98:96–105

    CAS  Google Scholar 

  • Magalhães DP, Marques MRC, Baptista DF, Buss DF (2014) Selecting a sensitive battery of bioassays to detect toxic effects of metals in effluents. Ecotoxicol Environ Safe 110:73–81

    Google Scholar 

  • Marasinghe Wadige CP, Taylor AM, Maher WA, Ubrihien RP, Krikowa F (2014) Effects of lead-spiked sediments on freshwater bivalve, Hyridella australis: linking organism metal exposure-dose-response. Aquat Toxicol 149:83–93

    CAS  Google Scholar 

  • Marcussen H, Dalsgaard A, Holm PE (2008) Content, distribution and fate of 33 elements in sediments of rivers receiving wastewater in Hanoi Vietnam. Environ pollut 155:41–51

    CAS  Google Scholar 

  • Matagi SV, Swai D, Mugabe R (1998) A review of heavy metal removal mechanisms in wetlands. Afr J Trop Hydrobiol Fish 8:13–25

    Google Scholar 

  • McKnight DM, Morel FMM (1979) Release of weak and strong copper-complexing agents by algae. Limnol Oceanogr 24:823–837

    CAS  Google Scholar 

  • McWilliams PG, Potts WTW (1978) The effects of pH and calcium concentrations on gill potentials in the brown trout, Salmo trutta. J Comp Physiol 126:277–286

    CAS  Google Scholar 

  • Memmert U (1987) Bioaccumulation of zinc in two freshwater organisms (Daphnia magna, crustacea and Brachydanio rerio, pisces). Water Res 21:99–106

    CAS  Google Scholar 

  • Mitchell EJ, Burgess J, Stuetz R (2002) Developments in ecotoxicity testing. Rev Environ Sci Biotechnol 1:169–198

    CAS  Google Scholar 

  • Monteiro MT, Oliveira R, Vale C (1995) Metal stress on the plankton communities of Sado River (Portugal). Water Res 29:695–701

    CAS  Google Scholar 

  • Monteiro DA, Rantin FT, Kalinin AL (2010) Inorganic mercury exposure: toxicological effects, oxidative stress biomarkers and bioaccumulation in the tropical freshwater fish matrinxã, Brycon amazonicus (Spix and Agassiz, 1829). Ecotoxicol 19:105–123

    CAS  Google Scholar 

  • Mosleh YY, Paris-Palacios S, Arnoult F, Couderchet M, Biagianti-Risbourg S, Vernet G (2004) Metallothionein induction in aquatic oligochaete Tubifex tubifex exposed to herbicide isoproturon. Environ Toxicol 19:88–93

    CAS  Google Scholar 

  • Mu Y, Wu F, Chen C, Liu Y, Zhao X, Liao H, Giesy JP (2014) Predicting criteria continuous concentrations of 34 metals or metalloids by use of quantitative ion character-activity relationships–species sensitivity distributions (QICAR–SSD) model. Environ Pollut 188:50–55

    CAS  Google Scholar 

  • Munger C, Hare L (1997) Relative importance of water and food as cadmium sources to an aquatic insect (Chaoborus punctipennis): implications for predicting Cd bioaccumulation in nature. Environ Sci Technol 31:891–895

    CAS  Google Scholar 

  • Munné A, Tirapu L, Sola C, Olivella L, Vilanova M, Ginebreda A, Prat N (2012) Comparing chemical and ecological status in catalan rivers: analysis of river quality status following the water framework directive. Emerging and priority pollutants in rivers. Springer, Berlin, pp 243–265

    Google Scholar 

  • Nagajyoti PC, Lee KD, Sreekanth TVM (2010) Heavy metals, occurrence and toxicity for plants: a review. Environ Chem Lett 8:199–216

    CAS  Google Scholar 

  • Nishikawa K, Yamakoshi Y, Uemura I, Tominaga N (2003) Ultrastructural changes in Chlamydomonas acidophila (Chlorophyta) induced by heavy metals and polyphosphate metabolism. FEMS Microbiol Ecol 44:253–259

    CAS  Google Scholar 

  • Niyogi S, Wood CM (2004) Biotic ligand model, a flexible tool for developing sitespecific water quality guidelines for metals. Environ Sci Technol 38:6177–6192

    CAS  Google Scholar 

  • Niyogi S, Kent R, Wood CM (2008) Effects of water chemistry variables on gill binding and acute toxicity of cadmium in rainbow trout (Oncorhynchus mykiss): a biotic ligand model (BLM) approach. Comp Biochem Physiol C 148:305–314

    Google Scholar 

  • Norwood WP, Borgmann U, Dixon DG, Wallace A (2003) Effects of metal mixtures on aquatic biota: a review of observations and methods. Hum Ecol Risk Assess 9:795–811

  • Nunes B, Capela RC, Sérgio T, Caldeira C, Gonçalves F, Correia AT (2014) Effects of chronic exposure to lead, copper, zinc, and cadmium on biomarkers of the European eel, Anguilla anguilla. Environ Sci Pollut Res 21:5689–5700

    CAS  Google Scholar 

  • Nystrand MI, Österholm P, Nyberg ME, Gustafsson JP (2012) Metal speciation in rivers affected by enhanced soil erosion and acidity. Appl Geochem 27:906–916

    CAS  Google Scholar 

  • Olsvik PA, Hindar K, Zachariassen KE, Andersen RA (2001) Brown trout (Salmo trutta) metallothioneins as biomarkers for metal exposure in two Norwegian rivers. Biomarkers 6:274–288

    CAS  Google Scholar 

  • Ospina-Alvarez N, Głaz Ł, Dmowski K, Krasnodębska-Ostręga B (2014) Mobility of toxic elements in carbonate sediments from a mining area in Poland. Environ Chem Lett 12:435–441

    CAS  Google Scholar 

  • Oueslati W, Added A, Abdeljaoued S (2010) Vertical profiles of simultaneously extracted metals (SEM) and acid-volatile sulfide in a changed sedimentary environment: Ghar El Melh Lagoon, Tunisia. Soil Sediment Contam 19:696–706

    CAS  Google Scholar 

  • Oven M, Grill E, Golan-Goldhirsh A, Kutchan TM, Zenk MH (2002) Increase of free cysteine and citric acid in plant cells exposed to cobalt ions. Phytochem 60:467–474

    CAS  Google Scholar 

  • Pandey LK, Kumar D, Yadav A, Rai J, Gaur JP (2014) Morphological abnormalities in periphytic diatoms as a tool for biomonitoring of heavy metal pollution in a river. Ecol Indic 36:272–279

    CAS  Google Scholar 

  • Paquin PR, Gorsuch JW, Apte S, Batley GE, Bowles KC, Campbell PG et al (2002) The biotic ligand model: a historical overview. Comp Biochem Physiol C Toxicol Pharmacol 133:3–35

    Google Scholar 

  • Pesavento M, Alberti G, Biesuz R (2009) Analytical methods for determination of free metal ion concentration, labile species fraction and metal complexation capacity of environmental waters: a review. Anal Chim Acta 631:129–141

    CAS  Google Scholar 

  • Phillips GR, Buhler DR (1980) Mercury accumulation in and growth rate of rainbow trout, Salmo gairdneri, stocked in an eastern Oregon reservoir. Arch Environ Contam Toxicol 9:99–107

    CAS  Google Scholar 

  • Phillips GR, Gregory RW (1979) Assimilation efficiency of dietary methylmercury by northern pike (Esox lucius). J Fish Res Board Can 36:1516–1519

    CAS  Google Scholar 

  • Pinto E, Sigaud-Kutner TCS, Leitao MAS, Okamoto OK, Morse D, Colepicolo P (2003) Heavy metal-induced oxidative stress in algae. J Phycol 39:1008–1018

    CAS  Google Scholar 

  • Playle RC (1998) Modelling metal interactions at fish gills. Sci Total Environ 219:147–163

    CAS  Google Scholar 

  • Playle RC (2004) Using multiple metal–gill binding models and the toxic unit concept to help reconcile multiple-metal toxicity results. Aquat Toxicol 67:359–370

    CAS  Google Scholar 

  • Prica M, Dalmacija B, Rončević S, Krčmar D, Bečelić M (2008) A comparison of sediment quality results with acid volatile sulfide (AVS) and simultaneously extracted metals (SEM) ratio in Vojvodina (Serbia) sediments. Sci Total Environ 389:235–244

    CAS  Google Scholar 

  • Raftopoulou EK, Dailianis S, Dimitriadis VK, Kaloyianni M (2006) Introduction of cAMP and establishment of neutral lipids alterations as pollution biomarkers using the mussel Mytilus galloprovincialis. Correlation with a battery of biomarkers. Sci Total Environ 368:597–614

    CAS  Google Scholar 

  • Rainbow PS, Luoma SN (2011) Metal toxicity, uptake and bioaccumulation in aquatic invertebrates—modelling zinc in crustaceans. Aquat Toxicol 105:455–465

    CAS  Google Scholar 

  • Reeve R (2002) Introduction to environmental analysis. Wiley, UK

    Google Scholar 

  • Resh VH (2008) Which group is best? Attributes of different biological assemblages used in freshwater biomonitoring programs. Environ Monit Assess 138:131–138

    Google Scholar 

  • Richards JG, Burnison BK, Playle RC (1999) Natural and commercial dissolved organic matter protects against the physiological effects of a combined cadmium and copper exposure on rainbow trout (Oncorhynchus mykiss). Can J Fish Aquat Sci 56:407–418

    CAS  Google Scholar 

  • Robinson NJ, Tommey AM, Kuske C, Jackson PJ (1993) Plant metallothioneins. Biochem J 295:1–10

    CAS  Google Scholar 

  • Robinson KA, Baird DJ, Wrona FJ (2003) Surface metal adsorption on zooplankton carapaces: implications for exposure and effects in consumer organisms. Environ Pollut 122:159–167

    CAS  Google Scholar 

  • Rocha JC, Junior ES, Zara LF, Rosa AH, Dos Santos A, Burba P (2000) Reduction of mercury (II) by tropical river humic substances (Rio Negro)—a possible process of the mercury cycle in Brazil. Talanta 53:551–559

    CAS  Google Scholar 

  • Rocha JC, Sargentini E Jr, Zara LF, Rosa AH, Dos Santos A, Burba P (2003) Reduction of mercury (II) by tropical river humic substances (Rio Negro)—Part II. Influence of structural features (molecular size, aromaticity, phenolic groups, organically bound sulfur). Talanta 61:699–707

    CAS  Google Scholar 

  • Rodea-Palomares I, González-García C, Leganés F, Fernández-Piñas F (2009) Effect of pH, EDTA, and anions on heavy metal toxicity toward a bioluminescent cyanobacterial bioreporter. Arch Environ Contam Tox 57:477–487

    CAS  Google Scholar 

  • Rodrigues ALS, Rocha JBT, Pereira ME, Souza DO (1996) δ-aminolevulinic acid dehydratase activity in weanling and adult rats exposed to lead acetate. Bull Environ Contam Toxicol 57:47–53

    CAS  Google Scholar 

  • Rosa AH, Rocha JC, Burba P (2002) Extraction and exchange behavior of metal species in therapeutically applied peat. Talanta 58:969–978

    CAS  Google Scholar 

  • Rudd JW, Furutani A, Turner MA (1980) Mercury methylation by fish intestinal contents. Appl Environ Microbiol 40:777–782

    CAS  Google Scholar 

  • Saglam D, Atli G, Canli M (2013) Investigations on the osmoregulation of freshwater fish (Oreochromis niloticus) following exposures to metals (Cd, Cu) in differing hardness. Ecotoxicol Environ Saf 92:79–86

    CAS  Google Scholar 

  • Sánchez-Marín P, Lorenzo JI, Blust R, Beiras R (2007) Humic acids increase dissolved lead bioavailability for marine invertebrates. Environ Sci Technol 41:5679–5684

    Google Scholar 

  • Santore RC, Di Toro DM, Paquin PR, Allen HE, Meyer JS (2001) Biotic ligand model of the acute toxicity of metals. 2. Application to acute copper toxicity in freshwater fish and Daphnia. Environ Toxicol Chem 20:2397–2402

    CAS  Google Scholar 

  • Santoro A, Blo G, Mastrolitti S, Fagioli F (2009) Bioaccumulation of heavy metals by aquatic macroinvertebrates along the Basento River in the South of Italy. Water Air Soil Pollut 201:19–31

    CAS  Google Scholar 

  • Sarin C, Hall JM, Cotter-Howells J, Killham K, Cresser MS (2000) Influence of complexation with chloride on the responses of a lux-marked bacteria bioassay to cadmium, copper, lead, and mercury. Environ Toxicol Chem 19:259–264

    CAS  Google Scholar 

  • Sarma SSS, Nandini S (2006) Review of recent ecotoxicological studies on cladocerans. J Environ Sci Health B 41:1417–1430

    CAS  Google Scholar 

  • Schamphelaere De, Karel AC, Janssen CR (2004) Bioavailability and chronic toxicity of zinc to juvenile rainbow trout (Oncorhynchus mykiss): comparison with other fish species and development of a biotic ligand model. Environ Sci Technol 38:6201–6209

    Google Scholar 

  • Schat H, Llugany M, Vooijs R, Hartley-Whitaker J, Bleeker PM (2002) The role of phytochelatins in constitutive and adaptive heavy metal tolerances in hyperaccumulator and non-hyperaccumulator metallophytes. J Exp Bot 53:2381–2392

    CAS  Google Scholar 

  • Schmidt TS, Clements WH, Mitchell KA, Church SE, Wanty RB, Fey DL et al (2010) Development of a new toxic-unit model for the bioassessment of metals in streams. Environ Toxicol Chem 29:2432–2442

    CAS  Google Scholar 

  • Schubauer-Berigan MK, Dierkes JR, Monson PD, Ankley GT (1993) pH-Dependent toxicity of Cd, Cu, Ni, Pb and Zn to Ceriodaphnia dubia, Pimephales promelas, Hyalella azteca and Lumbriculus variegatus. Environ Toxicol Chem 12:1261–1266

    CAS  Google Scholar 

  • Schwartz ML, Curtis PJ, Playle RC (2004) Influence of natural organic matter source on acute copper, lead, and cadmium toxicity to rainbow trout (Oncorhynchus mykiss). Environ Toxicol Chem 23:2889–2899

    Google Scholar 

  • Sevcikova M, Modra H, Slaninova A, Svobodova Z (2011) Metals as a cause of oxidative stress in fish: a review. Vet Med 56:537–546

    CAS  Google Scholar 

  • Shanker AK, Cervantes C, Loza-Tavera H, Avudainayagam S (2005) Chromium toxicity in plants. Environ Int 31:739–753

    CAS  Google Scholar 

  • Sharma SS, Schat H, Vooijs R, Van Heerwaarden LM (1999) Combination toxicology of copper, zinc, and cadmium in binary mixtures: concentration-dependent antagonistic, nonadditive, and synergistic effects on root growth in Silene vulgaris. Environ Toxicol Chem 18:348–355

    CAS  Google Scholar 

  • Singh HP, Mahajan P, Kaur S, Batish DR, Kohli RK (2013) Chromium toxicity and tolerance in plants. Environ Chem Lett 11:229–254

    CAS  Google Scholar 

  • Sinha S, Bhatt K, Pandey K, Singh S, Saxena R (2003) Interactive metal accumulation and its toxic effects under repeated exposure in submerged plant najas indica cham. Bull Environ Contam Toxicol 70:0696–0704

    CAS  Google Scholar 

  • Siripornadulsil S, Traina S, Verma DPS, Sayre RT (2002) Molecular mechanisms of proline-mediated tolerance to toxic heavy metals in transgenic microalgae. Plant Cell Online 14:2837–2847

    CAS  Google Scholar 

  • Smiejan A, Wilkinson KJ, Rossier C (2003) Cd bioaccumulation by a freshwater bacterium, Rhodospirillum rubrum. Environ Sci Technol 37:701–706

    CAS  Google Scholar 

  • Smith SR (2009) A critical review of the bioavailability and impacts of heavy metals in municipal solid waste composts compared to sewage sludge. Environ Int 35:142–156

    CAS  Google Scholar 

  • Sofyan A, Shaw JR, Birge WJ (2006) Metal trophic transfer from algae to cladocerans and the relative importance of dietary metal exposure. Environ Toxicol Chem 25:1034–1041

    CAS  Google Scholar 

  • Stankovic S, Kalaba P, Stankovic AR (2014) Biota as toxic metal indicators. Environ Chem Lett 12:63–84

    CAS  Google Scholar 

  • Stockdale A, Tipping E, Lofts S, Fott J et al (2014) Metal and proton toxicity to lake zooplankton: a chemical speciation based modelling approach. Environ Pollut 186:115–125

    CAS  Google Scholar 

  • Stockdale A, Tipping E, Lofts S, Ormerod SJ, Clements WH, Blust R (2010) Toxicity of proton–metal mixtures in the field: linking stream macroinvertebrate species diversity to chemical speciation and bioavailability. Aquat Toxicol 100:112–119

  • Tamas MJ, Wysocki R (2001) Mechanisms involved in metalloid transport and tolerance acquisition. Curr Genet 40:2–12

    CAS  Google Scholar 

  • Templeton DM, Cherian MG (1991) Toxicological significance of metallothionein. Meth Enzymol 205:11–24

    CAS  Google Scholar 

  • Templeton DM, Ariese F, Cornelis R, Danielsson L-G, Muntau H, Leeuwen HPV et al (2000) Guidelines for terms related to chemical speciation and fractionation of elements. Definitions, structural aspects, and methodological approaches. Pure Appl Chem 72:1453–1470

    CAS  Google Scholar 

  • Tepe Y, Türkmen M, Türkmen A (2008) Assessment of heavy metals in two commercial fish species of four Turkish seas. Environ Monit Assess 146:277–284

    CAS  Google Scholar 

  • Tipping E (1998) Humic Ion-Binding Model VI: an improved description of the interactions of protons and metal ions with humic substances. Aquat Geochem 4:3–47

    CAS  Google Scholar 

  • Tipping E, Lofts S, Sonke JE (2011) Humic Ion-Binding Model VII: a revised parameterisation of cation-binding by humic substances. Environ Chem 8:225–235

    CAS  Google Scholar 

  • Tsiridis V, Petala M, Samaras P, Hadjispyrou S, Sakellaropoulos G, Kungolos A (2006) Interactive toxic effects of heavy metals and humic acids on Vibrio fischeri. Ecotoxi Environ Saf 63:158–167

    CAS  Google Scholar 

  • Tsui MTK, Wang WX (2006) Acute toxicity of mercury to Daphnia magna under different conditions. Environ Sci Technol 40:4025–4030

    CAS  Google Scholar 

  • Turner MA, Swick AL (1983) The English-Wabigoon River System: IV. Interaction between mercury and selenium accumulated from waterborne and dietary sources by northern pike (Esox lucius). Can J Fish Aquat Sci 40:2241–2250

    CAS  Google Scholar 

  • USEPA, United States Environmental Protection Agency (1995) Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates, and fish, 2nd edn. Office of Water, Washington, DC: EPA 841-B-99-002

  • USEPA, United States Environmental Protection Agency (2007) Framework for metals risk assessment. Office of the Science Advisor, Risk Assessment Forum. Washington, DC: EPA/120/R-07/001

  • USEPA, United States Environmental Protection Agency (2009) National recommended water quality criteria. Office of Water, Office of Science and Technology, Washington

    Google Scholar 

  • Velma V, Tchounwou PB (2010) Chromium-induced biochemical, genotoxic and histopathologic effects in liver and kidney of goldfish Carassius auratus. Mutat Res 698:43–51

    CAS  Google Scholar 

  • Vignati DA, Loizeau J-L, Rossé P, Dominik J (2006) Comparative performance of membrane filters vs. high-surface area filtration cartridges for the determination of element concentrations in freshwater systems. Water Res 40:917–924

    CAS  Google Scholar 

  • Vignati DA, Dominik J, Beye ML, Pettine M, Ferrari BJD (2010) Chromium (VI) is more toxic than chromium (III) to freshwater algae: a paradigm to revise? Ecotoxicol Environ Saf 73:743–749

    CAS  Google Scholar 

  • Vijver MG, van Gestel CAM, Lanno RP, van Straalen NM, Peijnenburg WJGM (2004) Internal metal sequestration and its ecotoxicological relevance: a review. Environ Sci Technol 38:4705–4712

    CAS  Google Scholar 

  • Wallace WG, Lopez GR (1996) Relationship between subcellular cadmium distribution in prey and cadmium trophic transfer to a predator. Estuaries 19:923–930

    CAS  Google Scholar 

  • Wallace WG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. II. The significance of trophically available metal (TAM). Mar Ecol Prog Ser 257:125–135

    CAS  Google Scholar 

  • Wallace WG, Lee BG, Luoma SN (2003) Subcellular compartmentalization of Cd and Zn in two bivalves. I. Significance of metal-sensitive fractions (MSF) and biologically detoxified metal (BDM). Mar Ecol Prog Ser 249:183–197

    CAS  Google Scholar 

  • Wang W-X (2013) Prediction of metal toxicity in aquatic organisms. Chin Sci Bull 58:194–202

    Google Scholar 

  • Wang W-X, Rainbow PS (2008) Comparative approaches to understand metal bioaccumulation in aquatic animals. Comp Biochem Physiol 148:315–323

    Google Scholar 

  • Wei Y, Zhang J, Zhang D, Tu T, Luo L (2014) Metal concentrations in various fish organs of different fish species from Poyang Lake, China. Ecotoxicol Environ Saf 104:182–188

    CAS  Google Scholar 

  • Weiner ER (2000) Applications of environmental aquatic chemistry: a practical guide. Taylor & Francis Group, Boca Raton

    Google Scholar 

  • Weltens R, Goossens R, Van Puymbroeck S (2000) Ecotoxicity of contaminated suspended solids for filter feeders (Daphnia magna). Arch Environ Contam Toxicol 39:315–323

    CAS  Google Scholar 

  • Wilde KL, Stauber JL, Markich SJ, Franklin NM, Brown PL (2006) The effect of pH on the uptake and toxicity of copper and zinc in a tropical freshwater alga (Chlorella sp.). Arch Environ Contam Toxicol 51:174–185

    CAS  Google Scholar 

  • Winner RW, Boesel MW, Farrell MP (1980) Insect community structure as an index of heavy-metal pollution in lotic ecosystems. Can J Fish Aquat Sci 37:647–655

    CAS  Google Scholar 

  • Yamazaki M, Tanizaki Y, Shimokawa T (1996) Silver and other trace elements in a freshwater fish, Carasius auratus langsdorfii, from the Asakawa River in Tokyo, Japan. Environ Pollut 94:83–90

    CAS  Google Scholar 

  • Zaccaro MC, Salazar C, Zulpa de Caire G, Storni de Cano M, Stella AM (2001) Lead toxicity in cyanobacterial porphyrin metabolism. Environ Toxicol 16:61–67

    CAS  Google Scholar 

  • Zhang L, Qiu L, Wu H, Liu X, You L, Pei D, Zhao J (2012) Expression profiles of seven glutathione S-transferase (GST) genes from Venerupis philippinarum exposed to heavy metals and benzo [a] pyrene. Comp Biochem Physiol 155:517–527

    CAS  Google Scholar 

  • Zhou Q, Zhang J, Fu J, Shi J, Jiang G (2008) Biomonitoring: an appealing tool for assessment of metal pollution in the aquatic ecosystem. Anal Chim Acta 606:135–150

    CAS  Google Scholar 

Download references

Acknowledgments

We are thankful for the financial support from CNPq (PROEP/IOC Nº400107/2011-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Danielly de Paiva Magalhães.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Paiva Magalhães, D., da Costa Marques, M.R., Baptista, D.F. et al. Metal bioavailability and toxicity in freshwaters. Environ Chem Lett 13, 69–87 (2015). https://doi.org/10.1007/s10311-015-0491-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10311-015-0491-9

Keywords

Navigation