Skip to main content
Log in

Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation

  • Articles
  • Published:
The Journal of Microbiology Aims and scope Submit manuscript

Abstract

Leptospirillum ferriphilum has been identified as the dominant, moderately thermophilic, bioleaching microorganism in bioleaching processes. It is an acidic and chemolithoautrophic bacterium that gains electrons from ferrous iron oxidation for energy production and cell growth. Genetic information about this microorganism has been limited until now, which has hindered its further exploration. In this study, the complete genome of L. ferripilum ML-04 is sequenced and annotated. The bacterium has a single circular chromosome of 2,406,157 bp containing 2,471 coding sequences (CDS), 2 rRNA operons, 48 tRNA genes, a large number of mobile genetic elements and 2 genomic islands. In silico analysis shows L. ferriphilum ML-04 fixes carbon through a reductive citric acid (rTCA) cycle, and obtains nitrogen through ammonium assimilation. The genes related to “cell envelope biogenesis, outer membrane” (6.9%) and “DNA replication, recombination and repair” (5.6%) are abundant, and a large number of genes related to heavy metal detoxification, oxidative and acidic stress defense, and signal transduction pathways were detected. The genomic plasticity, plentiful cell envelope components, inorganic element metabolic abilities and stress response mechanisms found the base for this organism’s survival in the bioleaching niche.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acuña, J., J. Rojas, A.M. Amaro, H. Toledo, and C.A. Jerez. 1992. Chemotaxis of Leptospirillum ferrooxidans and other acidophilic chemolithotrophs: comparison with the Escherichia coli chemosensory system. FEMS Microbiol. Lett. 75, 37–42.

    Article  PubMed  Google Scholar 

  • Baker-Austin, C. and M. Dopson. 2007. Life in acid: pH homeostasis in acidophiles. Trends Microbiol. 15, 165–171.

    Article  PubMed  CAS  Google Scholar 

  • Barreto, M., E. Jedlicki, and D.S. Holmes. 2005. Identification of a gene cluster for the formation of extracellular polysaccharide precursors in the chemolithoautotroph Acidithiobacillus ferrooxidans. Appl. Environ. Microbiol. 71, 2902–2909.

    Article  PubMed  CAS  Google Scholar 

  • Benson, G. 1999. Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res. 27, 573–580.

    Article  PubMed  CAS  Google Scholar 

  • Blaudeck, N., P. Kreutzenbeck, M. Muller, G.A. Sprenger, and R. Freudl. 2005. Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB. J. Biol. Chem. 280, 3426–3432.

    Article  PubMed  CAS  Google Scholar 

  • Cabreiro, F., C.R. Picot, B. Friguet, and I. Petropoulos. 2006. Methionine sulfoxide reductases: relevance to aging and protection against oxidative stress. Ann. NY Acad. Sci. 1067, 37–44.

    Article  PubMed  CAS  Google Scholar 

  • Castanie-cornet, M., T.A. Penfound, D. Smith, J.F. Elliott, and J.W. Foster. 1999. Control of acid resistance in Escherichia coli. J. Bacteriol. 181, 3525–3535.

    PubMed  CAS  Google Scholar 

  • Coram, N.J. and D.E. Rawlings. 2002. Molecular relationship between two groups of the genus Leptospirillum and the finding that Leptosphillum ferriphilum sp. nov. dominates South African commercial biooxidation tanks that operate at 40°C. Appl. Environ. Microbiol. 68, 838–845.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, C., A. Schulte, Y. Stockdreher, C. Hong, F. Grimm, J. Sander, R. Kim, S. Kim, and D.H. Shin. 2008. Structural and molecular genetic insight into a widespread sulfur oxidation pathway. J. Math. Biol. 384, 1287–1300.

    CAS  Google Scholar 

  • Delepelaire, P. 2004. Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta. 1694, 149–161.

    Article  PubMed  CAS  Google Scholar 

  • Dixon, R. 1998. The oxygen-responsive NIFL-NIFA complex: a novel two-component regulatory system controlling nitrogenase synthesis in Γ-Proteobacteria. Arch. Microbiol. 169, 371–380.

    Article  PubMed  CAS  Google Scholar 

  • Ducluzeau, A., S. Ouchane, and W. Nitschke. 2008. The cbb3 oxidases are an ancient innovation of the domain bacteria. Mol. Biol. Evol. 25,1158–1166.

    Article  PubMed  CAS  Google Scholar 

  • Edwards, K.J., P.L. Bond, and J.F. Banfield. 2000. Characteristics of attachment and growth of Thiobacillus caldus on sulphide minerals: a chemotactic response to sulphur minerals? Environ. Microbiol. 2, 324–332.

    Article  PubMed  CAS  Google Scholar 

  • Eichhorn, E., J.R. van der Ploeg, and T. Leisinger. 2000. Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J. Bacteriol. 182, 2687–2695.

    Article  PubMed  CAS  Google Scholar 

  • Goltsman, D.S.A., V.J. Denef, S.W. Singer, N.C. VerBerkmoes, M. Lefsrud, R.S. Mueller, G.J. Dick, and et al. 2009. Community genomic and proteomic analysis of chemoautotrophic, iron-oxidizing “Leptospirillum rubarum” (Group II) and “Leptospirillum ferrodiazotrophum” (Group III) in acid mine drainage biofilms. Appl. Environ. Microbiol. 75, 4599–4615.

    Article  PubMed  CAS  Google Scholar 

  • Hanson, T.E. and F.R. Tabita. 2001. A ribulose-1,5-bisphosphate carboxylase/ oxygenase (RubisCO)-like protein from Chlorobium tep idum that is involved with sulfur metabolism and the response to oxidative stress. Proc. Natl. Acad. Sci. USA 98, 4397–4402.

    Article  PubMed  CAS  Google Scholar 

  • Hutchins, A.M., J.F. Holden, and M.W.W. Adams. 2001. Phosphoenolpyruvate synthetase from the hyperthermophilic archaeon Pyrococcus furiosus. J. Bacteriol. 183, 709–715.

    Article  PubMed  CAS  Google Scholar 

  • Jeans, C., S.W. Singer, C.S. Chan, N.C. VerBerkmoes, M. Shah, R.L. Hettich, J.F. Banfield, and M.P. Thelen. 2008. Cytochrome 572 is a conspicuous membrane protein with iron oxidation activity purified directly from a natural acidophilic microbial community. ISME J. 2, 542–550.

    Article  PubMed  CAS  Google Scholar 

  • Jiao, Y. and D.K. Newman. 2007. The pio operon is essential for phototrophic Fe(II) oxidation in Rhodopseudomonas palustris TIE-1. J. Bacteriol. 189, 1765–1773.

    Article  PubMed  CAS  Google Scholar 

  • Kawasaki, S., J. Ishikura, D. Chiba, T. Nishino, and Y. Niimura. 2004. Purification and characterization of an H2O-forming NADH oxidase from Clostridium aminovalericum: existence of an oxygen-detoxifying enzyme in an obligate anaerobic bacteria. Arch. Microbiol. 181, 324–330.

    Article  PubMed  CAS  Google Scholar 

  • Kerscher, L., S. Nowitzki, D. Oesterhelt. 1982. Thermoacidophilic archaebacteria contain bacterial-type ferredoxins acting as electron acceptors of 2-oxoacid:ferredoxin oxidoreductases. Eur. J. Biochem. 128, 223–230.

    Article  PubMed  CAS  Google Scholar 

  • Kurtz, D.M., Jr. 2006. Avoiding high-valent iron intermediates: Superoxide reductase and rubrerythrin. J. Inorg. Biochem. 100, 679–693.

    Article  PubMed  CAS  Google Scholar 

  • Leigh, J.A. and J.A. Dodsworth. 2007. Nitrogen regulation in bacteria and archaea. Annu. Rev. Microbiol. 61, 349–377.

    Article  PubMed  CAS  Google Scholar 

  • Leverrier, P., J.P. Vissers, A. Rouault, P. Boyaval, and G. Jan. 2004. Mass spectrometry proteomic analysis of stress adaptation reveals both common and distinct response pathways in Propionibacterium freudenreichii. Arch. Microbiol. 181, 215–230.

    Article  PubMed  CAS  Google Scholar 

  • Levican, G., J.A. Ugalde, N. Ehrenfeld, A. Maass, and P. Parada. 2008. Comparative genomic analysis of carbon and nitrogen assimilation mechanisms in three indigenous bioleaching bacteria: predictions and validations. BMC Genomics 9, 581.

    Article  PubMed  Google Scholar 

  • Li, B., J. Lin, S. Mi, and J. Lin. 2010. Arsenic resistance operon structure in Leptospirillum ferriphilum and proteomic response to arsenic stress. Bioresour. Technol. 101, 9811–9814.

    Article  PubMed  CAS  Google Scholar 

  • Macnab, R.M. 2004. Type III flagellar protein export and flagellar assembly. Biochim. Biophys. Acta. 1694, 207–217.

    Article  PubMed  CAS  Google Scholar 

  • Mai, X. and M.W. Adams. 1996. Characterization of a fourth type of 2-keto acid-oxidizing enzyme from a hyperthermophilic archaeon: 2-ketoglutarate ferredoxin oxidoreductase from Thermococcus litoralis. J. Bacteriol. 178, 5890–5896.

    PubMed  CAS  Google Scholar 

  • Maklashina, E., D.A. Berthold, and G. Cecchini. 1998. Anaerobic expression of Escherichia coli succinate dehydrogenase: functional replacement of fumarate reductase in the respiratory chain during anaerobic growth. J. Bacteriol. 180, 5989–5996.

    PubMed  CAS  Google Scholar 

  • Michels, M. and E.P. Bakker. 1985. Generation of a large, protonophore-sensitive proton motive force and pH difference in the acidophilic bacteria Thermoplasma acidophilum and Bacillus acidocaldarius. J. Bacteriol. 161, 231–237.

    PubMed  CAS  Google Scholar 

  • Moat, A.G., J.W. Foster, and M.P. Spector. 2002. Microbial Physiology, fourth ed. Wiley-Liss, New York, NY, USA.

    Book  Google Scholar 

  • Morgan, R.W., M.F. Christman, F.S. Jacobson, G. Storz, and B.N. Ames. 1986. Hydrogen peroxide-inducible proteins in Salmonella typhimurium overlap with heat shock and other stress proteins. Proc. Natl. Acad. Sci. USA 83, 8059–8063.

    Article  PubMed  CAS  Google Scholar 

  • Muro-Pastor, M.I., J.C. Reyes, and F.J. Florencio. 2005. Ammonium assimilation in cyanobacteria. Photosynth. Res. 83, 135–150.

    Article  PubMed  CAS  Google Scholar 

  • Preiss, J. 1984. Bacterial glycogen synthesis and its regulation. Annu. Rev. Microbiol. 38, 419–458.

    Article  PubMed  CAS  Google Scholar 

  • Quatrini, R., C. Appia-Ayme, Y. Denis, E. Jedlicki, D.S. Holmes, and V. Bonnefoy. 2009. Extending the models for iron and sulfur oxidation in the extreme Acidophile Acidithiobacillus ferrooxidans. BMC Genomics 10, 394.

    Article  PubMed  Google Scholar 

  • Rawlings, D.E., H. Tributsch, and G.S. Hansford. 1999. Reasons why ‘Leptospirillum’-like species rather than Thiobacillus ferrooxidans are the dominant iron-oxidizing bacteria in many commercial processes for the biooxidation of pyrite and related ores. Microbiology 145, 5–13.

    Article  PubMed  CAS  Google Scholar 

  • Seibold, G.M., M. Wurst, and B.J. Eikmanns. 2009. Roles of maltodextrin and glycogen phosphorylases in maltose utilization and glycogen metabolism in Corynebacterium glutamicum. Microbiology 155, 347–358.

    Article  PubMed  CAS  Google Scholar 

  • Simon, J., R. Gross, O. Einsle, P.M.H. Kroneck, A. Kroger, and O. Klimmek. 2000. A NapC/NirT-type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes. Mol. Microbiol. 35, 686–696.

    Article  PubMed  CAS  Google Scholar 

  • Singer, S.W., C.S. Chan, A. Zemla, N.C. VerBerkmoes, M. Hwang, R.L. Hettich, J.F. Banfield, and M.P. Thelen. 2008. Characterization of cytochrome 579, an unusual cytochrome isolated from an iron-oxidizing microbial community. Appl. Environ. Microbiol. 74, 4454–4462.

    Article  PubMed  CAS  Google Scholar 

  • Szurmant, H. and G.W. Ordal. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68, 301–319.

    Article  PubMed  CAS  Google Scholar 

  • Tuffin, I.M., S.B. Hector, S.M. Deane, and D.E. Rawlings. 2006. Resistance determinants of a highly arsenic-resistant strain of Leptospirillum ferriphilum isolated from a commercial biooxidation tank. Appl. Environ. Microbiol. 72, 2247–2253.

    Article  PubMed  CAS  Google Scholar 

  • Valdes, J., F. Veloso, E. Jedlicki, and D. Holmes. 2003. Metabolic reconstruction of sulfur assimilation in the extremophile Acidithiobacillus ferrooxidans based on genome analysis. BMC Genomics 4, 51.

    Article  PubMed  Google Scholar 

  • van der Ploeg, J.R., E. Eichhorn, and T. Leisinger. 2001. Sulfonate-sulfur metabolism and its regulation in Escherichia coli. Arch. Microbiol. 176, 1–8.

    Article  PubMed  Google Scholar 

  • Walkup, L.K.B. and T. Kogoma. 1989. Escherichia coli proteins inducible by oxidative stress mediated by the superoxide radical. J. Bacteriol. 171, 1476–1484.

    PubMed  CAS  Google Scholar 

  • Wong, H.C., A.L. Fear, R.D. Calhoon, G.H. Eichinger, R. Mayer, D. Amikam, M. Benziman, and et al. 1990. Genetic organization of the cellulose synthase operon in Acetobacter xylinum. Proc. Natl. Acad. Sci. USA 87, 8130–8134.

    Article  PubMed  CAS  Google Scholar 

  • Yun, N.R., M. Yamamoto, H. Arai, M. Ishii, and Y. Igarashi. 2002. A novel five-subunit-type 2-oxoglutalate:ferredoxin oxidoreductases from Hydrogenobacter thermophilus TK-6. Biochim. Biophys. Res. Commun. 292, 280–286.

    Article  CAS  Google Scholar 

  • Zhang, Q., T. Iwaaki, T. Wakagi, and T. Oshima. 1996. 2-Oxoacid:ferredoxin oxidoreductase from the thermoacidophilic archaeon, Sulfolobus sp. strain 7. J. Biochem. 120, 587–599.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqun Lin.

Additional information

Supplemental material for this article may be found at http://www.springer.com/content/120956

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mi, S., Song, J., Lin, J. et al. Complete genome of Leptospirillum ferriphilum ML-04 provides insight into its physiology and environmental adaptation. J Microbiol. 49, 890–901 (2011). https://doi.org/10.1007/s12275-011-1099-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-011-1099-9

Keywords

Navigation