Skip to main content
Log in

Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Analyzing the microbial community structure and functions become imperative for ecological processes. To understand the impact of spent engine oil (SEO) contamination on microbial community structure of an agricultural soil, soil microcosms designated 1S (agricultural soil) and AB1 (agricultural soil polluted with SEO) were set up. Metagenomic DNA extracted from the soil microcosms and sequenced using Miseq Illumina sequencing were analyzed for their taxonomic and functional properties. Taxonomic profiling of the two microcosms by MG-RAST revealed the dominance of Actinobacteria (23.36%) and Proteobacteria (52.46%) phyla in 1S and AB1 with preponderance of Streptomyces (12.83%) and Gemmatimonas (10.20%) in 1S and Geodermatophilus (26.24%), Burkholderia (15.40%), and Pseudomonas (12.72%) in AB1, respectively. Our results showed that soil microbial diversity significantly decreased in AB1. Further assignment of the metagenomic reads to MG-RAST, Cluster of Orthologous Groups (COG) of proteins, Kyoto Encyclopedia of Genes and Genomes (KEGG), GhostKOALA, and NCBI’s CDD hits revealed diverse metabolic potentials of the autochthonous microbial community. It also revealed the adaptation of the community to various environmental stressors such as hydrocarbon hydrophobicity, heavy metal toxicity, oxidative stress, nutrient starvation, and C/N/P imbalance. To the best of our knowledge, this is the first study that investigates the effect of SEO perturbation on soil microbial communities through Illumina sequencing. The results indicated that SEO contamination significantly affects soil microbial community structure and functions leading to massive loss of nonhydrocarbon degrading indigenous microbiota and enrichment of hydrocarbonoclastic organisms such as members of Proteobacteria and Actinobacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abdulsalam S, Adefila SS, Bugaje IM, Ibrahim S (2012) Bioremediation of soil contaminated with used motor oil in a closed system. Bioremediation and biodegradation. J Bioremed Biodeg 3:12. doi:10.4172/2155-6199.1000172

    Google Scholar 

  • Abed RM, Al-Kindi S, Al-Kharusi S (2015) Diversity of bacterial communities along a petroleum contamination gradient in desert soils. Microb Ecol 69(1):95–105

    Article  CAS  Google Scholar 

  • Adebusoye SA, Ilori MO, Amund OO, Teniola OO, Olatope SO (2007) Microbial degradation of petroleum in a polluted tropical stream. World J Microbiol Biotechnol 23:1149–1159

  • Adelowo OO, Alagbe SO, Ayandele AA (2006) Time-dependent stability of used engine oil degradation by cultures of Pseudomonas fragi and Achromobacter aerogenes. Afri J Biotechnol 5:3476–2479

    Google Scholar 

  • Alyward FO, McDonald BR, Adams SM et al (2013) Comparison of 26 Sphingomonad genomes reveals diverse environmental adaptations and biodegradative capabilities. Appl Environ Microbiol 79:3724–3733

    Article  CAS  Google Scholar 

  • Andrew RWJ, Jackson JM (1996) Environmental science: the natural environment and human impact. Longman Publishers, Singapore

    Google Scholar 

  • Atlas RM (1981) Microbial degradation of petroleum: an environmental perspective. Microbiol Rev 45:180–209

    CAS  Google Scholar 

  • Atlas RM (1991) Microbial hydrocarbon degradation: bioremediation of oil spills. J Chem Technol Biotechnol 52:149–156

    Article  CAS  Google Scholar 

  • Bagherzadeh-Namazi A, Shojaosadati SA, Hashemi-Najafabadi S (2008) Biodegradation of used engine oil using mixed and isolated cultures. Int J Environ Res 2:431–440

    Google Scholar 

  • Balkwill DL, Fredrickson JK, Romine MF (2006) Sphingomonas and related genera. In: Dworkin M, Falkow S, Rosenberg E, Schleifer K-H, Stackebrandt E (eds.), The Prokaryotes: Springer New York, pp. 605–629

  • Baraniecki CA, Aislabie J, Foght JM (2002) Characterization of Sphingomonas sp. ant 17, an aromatic hydrocarbon-degrading bacterium isolated from Antarctic soil. Microb Ecol 43:44–54

    Article  CAS  Google Scholar 

  • Bashir Y, Singh SP, Konwar BK (2014) Metagenomics: an application-based perspective. Chinese J Biol. doi:10.1155/2014/1460301-7.

    Google Scholar 

  • Basuki W, Syahputra K, Suryani AT, Pradipta I (2011) Biodegradation of used engine oil. Indonesian J Biotechnol 16:132–138

    Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME J 5:908–917

    Article  CAS  Google Scholar 

  • Bell TH, Yergeau E, Maynard C, Juck C, Whyte LG, Greer CW (2013) Predictable bacterial composition and hydrocarbon degradation in artic soils following diesel and nutrient disturbance. The ISME journals 7:1200–1210

    Article  CAS  Google Scholar 

  • Bestawy E, Mohamed H, Nawal E (2005) The potentiality of free gram-negative bacteria for removing oil and grease from contaminated industrial effluents. World J Microbiol Biotechnol 21:815–822

    Article  CAS  Google Scholar 

  • Bundy JG, Paton GI, Campbell CD (2002) Microbial communities in different soils do not converge after diesel contamination. J Appl Microbiol 92:276–288

  • Cheung PY, Kinkle BK (2001) Mycobacterium diversity and pyrene mineralization in petroleumcontaminated soils. Appl Environ Microbiol 67:2222–2229

  • Cooksey DA (1994) Molecular mechanisms for copper resistance and accumulation in bacteria. FEMS Microbiol Rev 14:381–386

    Article  CAS  Google Scholar 

  • Dalal J, Sarma PM, Lavania M, Mandal AK, Lal B (2010) Evaluation of bacterial strains isolated from oil-contaminated soil for production of polyhydroxyalkanoic acids (PHA). Pedobiologia 54:25–30

    Article  CAS  Google Scholar 

  • Dominguez-Rusado E, Pitchel J (2003) Chemical characterization of fresh and weathered motor oil via GC/MS, NMR and FITR Techniques. Proceedings of the Indiana Academy of Science 112: 109–116

  • dos Santos HF, Cury JC, do Carmo FL, dos Santos AL, Tiedje J, van Elsas JD, Rosado AS, Peixoto RS (2011) Mangrove bacterial diversity and the impact of oil contamination revealed by pyrosequencing: bacterial proxies for oil pollution. PLoS ONE 6

  • Endo G, Narita M, Huang CC, Silver S (2002) Microbial heavy metal resistance transposons and plasmids: potential use for environmental biotechnology. J Environ Biotechnol 2:71–82

    Google Scholar 

  • Esser D, Kouril T, Talfournier F et al (2013) Unravelling the function of paralogs of the aldehyde dehydrogenase super family from Sulfolobus solfataricus. Extremophiles 12:75–88

    Google Scholar 

  • Fuentes S, Barra B, Caporaso G, Seeger M (2016) From rare to dominant: a fine-tuned soil bacterial bloom during petroleum hydrocarbon bioremediation. Appl Environ Microbiol 82(3):888–896

    Article  CAS  Google Scholar 

  • George KW, Hay AG (2011) Bacterial strategies for growth on aromatic compounds. Adv Appl Microbiol 74:1–33

    Article  CAS  Google Scholar 

  • Gorbushina AA (2007) Life on the rocks. Environ Microbiol 9(7):1613–1631

    Article  CAS  Google Scholar 

  • Greer CW, Whyte LG, Niederberger TD (2010) Microbial communities in hydrocarbon-contaminated temperate, tropical alpine, and polar soils. In: Timmis KN (ed) Handbook of hydrocarbon and lipid microbiology. Springer-Verlag, Berlin, pp 2313–2328

    Chapter  Google Scholar 

  • Gtari M, Essoussi I, Maaoui R et al (2012) Contrasted resistance of stone-dwelling Geodermatophilaceae species to stresses known to give rise to reactive oxygen species. FEMS Microbiol Ecol 80(3):566–577

    Article  CAS  Google Scholar 

  • Habe H, Ashikawa Y, Saiki Y, Yoshida T, Nojiri H, Omori T (2002) Sphingomonas sp strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol Lett 211:43–49

    Article  CAS  Google Scholar 

  • Hagwell IS, Delfino LM, Rao JJ (1992) Partitioning of polycyclic aromatic hydrocarbons from oil into water. Environ Sci Technol 26:2104–2110

    Article  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68:669–668

    Article  CAS  Google Scholar 

  • Harayama S, Kok M, Neidle EL (1992) Functional and evolutionary relationships among diverse oxygenases. Annu Rev Microbiol 46:565–601

    Article  CAS  Google Scholar 

  • Hirano J, Miyamoto K, Ohta H (2005) Purification and characterization of the alcohol dehydrogenase with a broad substrate specificity originated from 2-phenylethanol-assimilating Brevibacterium sp. KU 1309. J Biosci Bioeng 100:318–322

    Article  CAS  Google Scholar 

  • Ilori MO, Amund OO, Obayori OS, Omotayo AE (2015) Microbial population and physico-chemical dynamics of a soil ecosystem upon petroleum contamination. J Sci Res Dev 15:25–33

    Google Scholar 

  • Jayashree R, Evany NS, Rajesh PP, Krishnaraju M (2012) Biodegradation capability of bacterial species isolated from oil contaminated soils. J Acad Indus Res 1:140–143

    Google Scholar 

  • Jin L, Lee H-G, Kim H-S, Ahn C-Y, Oh H-M (2013) Geodermatophilus soli sp. nov. and Geodermatophilus terrae sp. nov., two actinobacteria isolated from grass soil. Int J Syst Evol Microbiol 63(7):2625–2629

    Article  CAS  Google Scholar 

  • Jurelevicius D, Alvare VM, Marques JM, Lima LRFS, Pias F d A, Seldin L (2013) Bacterial community response to petroleum hydrocarbon amendments in fresh water, marine and hypersaline water- containing microcosms. Appl Environ Microbiol 79(19):5927–5935

    Article  CAS  Google Scholar 

  • Kanaly RA, Harayama S (2010) Advances in the field of high molecular-weight polycyclic aromatic hydrocarbon biodegradation by bacteria. Microbiol Biotechnol 3:132–164

    Article  CAS  Google Scholar 

  • Kanehisa M, Sato Y, Morishima K (2016) BlastKOALA and GhostKOALA: KEGG tools for functional characterization of genome and metagenome sequences. J Mol Biol 428(4):726–731

    Article  CAS  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  CAS  Google Scholar 

  • Kielak AM, Bareto CC, Kowalchuk GA, van Veen JA, Kuramae EC (2016) The ecology of Acidobacteria: Moring beyond genes and genomes. Frontier in Microbiology. doi:10.3389/fmicb.2016.0074

    Google Scholar 

  • Kilndworth A, Pruesse E, Schweer T, Peplies J, Quast C, Horn M, Glockner FO (2013) Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies. Nucleic Acids Res 41(1):1–11

    Article  CAS  Google Scholar 

  • Koma D, Sakashita Y, Kubota K et al (2003) Degradation of car engine base oil by Rhodococcus sp. NDKK48 and Gordonia sp. NDKY76A. Biosci Biotechnol Biochem 67:1590–1593

    Article  CAS  Google Scholar 

  • Kostka JE, Prakash O, Overholt WA et al (2011) Hydrocarbon degrading bacteria and the bacterial community response in Gulf of Mexico beach sands impacted by the Deepwater horizon oil spill. Appl Environ Microbiol 77:7962–7974

    Article  CAS  Google Scholar 

  • Kunze M, Zerlin KF, Retzlaff A et al (2009) Degradation of chloroaromatics by Pseudomonas putida GJ31: assembled route for chlorobenzene degradation encoded by clusters on plasmid pKW1 and the chromosome. Microbiol 155:4069–4083

    Article  CAS  Google Scholar 

  • Labbe D, Margesin R, Schinner F, Whyte LG, Greer CW (2007) Comparative phylogenetic analysis of microbial communities in pristine and hydrocarbon-contaminated alpine soils. FEMS Microbiol Ecol 59:466–475

    Article  CAS  Google Scholar 

  • Lai Q, Li W, Shao Z (2012) Complete genome sequence of Alkanivorax dieselolei type strain B5. J Bacteriol 194:6674

    Article  CAS  Google Scholar 

  • Larkin MJ, Kulakov LA, Allen CC (2005) Biodegradation and Rhodococcus—masters of catabolic versatility. Curr Opin Biotechnol 16:282–290

    Article  CAS  Google Scholar 

  • Leahy JG, Colwell RR (1990) Microbial degradation of hydrocarbons in the environment. Microbiol Rev 54:305–315

    CAS  Google Scholar 

  • Le Borgne S, Paniagua D, Vazquez-Duhalt R (2008) Biodegradation of organic pollutants by halophilic bacteria and archaea. J Mol Microbiol Biotechnol 15:74–92

    Article  CAS  Google Scholar 

  • Liang Y, Li G, Van Nostrans JD, He Z, Wu L, Deng Y, Zhang X, Zhou J (2009) Microarray-based analysis of microbial functional diversity along an oil contamination gradient in oil field. FEMS Microbiol Ecol 70:168–177

    Article  CAS  Google Scholar 

  • Lin C, Olson BH (1995) Occurrence of cop-like resistance genes among bacteria isolated from a water distribution system. Can J Microbiol 41:642–646

    Article  CAS  Google Scholar 

  • Lloyd AC, Cackette TA (2001) Diesel engines: environmental impact and control. J Air Waste Manag Assoc 51:809–847

    Article  CAS  Google Scholar 

  • Lu S-T, Isaac K (2008) Characterization of motor lubricating oils and their oil water partition. Environ Forens 9:295–309

    Article  CAS  Google Scholar 

  • Mandri T, Lin J (2007) Isolation and characterization of engine oil degrading indigenous microorganism in Kwazulu-Natal, South Africa. Afr J Biotechnol 62:23–26

    Google Scholar 

  • Marchler-Bauer A, Derbyshire MK, Gonzales NR et al (2015) CDD: NCBI’s conserved domain database. Nucleic Acids Res 43(D):222–D226

    Article  Google Scholar 

  • Mason JR, Cammack R (1992) The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305

    Article  CAS  Google Scholar 

  • Mishra S, Jyot J, Kuhad R, Lal B (2001) Evaluation of inoculum addition to stimulate in situ bioremediation of oily-sludge-contaminated soil. Appl Environ Microbiol 67(4):1675–1681

    Article  CAS  Google Scholar 

  • Montero-Calasanz MC, Hezbri K, Göker M et al (2015) Description of gamma radiation-resistant Geodermatophilus dictyosporus sp. nov. to accommodate the not validly named Geodermatophilus obscurus subsp. dictyosporus (Luedemann, 1968). Extremophiles 19:77–85

    Article  CAS  Google Scholar 

  • Myrold DD, Zeglin LH, Jansson JK (2013) The potential of metagenomics approaches for understanding soil microbial processes. Soil Sci Soc Am J 78:3–10

    Article  CAS  Google Scholar 

  • Nemergut DR, Martin AP, Schmidt SK (2004) Intergon diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70:1160–1168

    Article  CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14:186–199

    Article  CAS  Google Scholar 

  • Nogales B, Moore ERB, Llobert-Brossa E, Rossello-Mora R, Amann R, Timmis KN (2001) Combined use of 16S ribosomal DNA and 16S rRNA to study the bacterial community of polychlorinated biphenyl-polluted soil. Appl Environ Microbiol 67:1874–1884

    Article  CAS  Google Scholar 

  • Nucifora G, Chu L, Misra TK, Silver S (1989) Cadmium resistance from Staphylococcus aureus plasmid p1258 cadA gene results from cadmium-efflux ATPase. Proc Natl Acad Sci U S A 86:3544–3548

    Article  CAS  Google Scholar 

  • Obayori OS, Ilori MO, Adebusoye SA, Amund OO, Oyetibo GO (2008) Microbial population changes in tropical agricultural soil experimentally contaminated with crude petroleum. Afr J Biotechnol 7:4512–4520

    CAS  Google Scholar 

  • Obayori OS, Salam LB (2010) Degradation of polycyclic aromatic hydrocarbons: role of plasmids. Sci Res Essays 5(25):4093–4106

    Google Scholar 

  • Obayori OS, Salam LB, Ogunwumi OS (2014) Biodegradation of fresh and used engine oils by Pseudomonas aeruginosa LP5. J Bioremed Biodegrad 5:213. doi:10.4172/2/21556199.1000213

    Article  CAS  Google Scholar 

  • Odjegba VJ, Sadiq A (2006) Effects of spent engine oil on the growth parameters, chlorophyll and protein level of Amaranthus hybridus L. Nig J Appl Sci 7:1–46

    Google Scholar 

  • Okoh AI, Trejo-Hernandez MR (2006) Remediation of petroleum hydrocarbon polluted systems: exploiting the bioremediation strategies. Afr J Biotechnol 5(25):2520–2525

  • Olajire AA, Essien JP (2014) Aerobic degradation of petroleum components by microbial consortia. Petrol Environ Biotechnol 5:5. doi:10.4172/2157-7463.1000195

    Google Scholar 

  • Oulas A, Pavloudi G, Polymanakou P, Pavlopoulus GA, Papanikolaou N, Kotoulas G, Arvanitidis C, Iliopoulus I (2015) Metagenomics: tools and insights for analysing next-generation sequencing data derived from biodiversity studies. Bioinformatics and Biology insights 9:75–88

    CAS  Google Scholar 

  • Outten FW, Outten CE, O’Halloran T (2000) Metalloregulatory systems at the interface between bacterial metal homeostasis and resistance. In: Storz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington D.C, pp 145–157

    Google Scholar 

  • Oyetibo GO, Ilori MO, Adebusoye SA, Obayori OS, Amund OO (2010) Bacteria with dual resistance to elevated concentrations of heavy metals and antibiotics in Nigerian contaminated systems. Environ Monit Assess 168:305–314

    Article  CAS  Google Scholar 

  • Parales RE, Ju KS, Rollefson J, Ditty JL (2008) Bioavailability, transport and chemotaxis of organic pollutants. In: Diaz E (ed) Microbial Bioremediation. Caister Academic Press, Norfolk, pp 145–187

    Google Scholar 

  • Parks DH, Tyson GW, Hugenhiltz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30(21):3123–3124

    Article  CAS  Google Scholar 

  • Pathak H, Jaroli BP (2012) Biochemical characterization of 4 t engine oil degrading microorganism isolated from polluted soil with petroleum hydrocarbons. Indian J Fund Appl Sci 2:300–305

    Google Scholar 

  • Philp JC, Whiteley AS, Ciric L, Bailey MJ (2005) Monitoring bioremediation. In: Atlas RM, Philp J (eds) Bioremediation: applied solution for a real-world environmental clean up. ASM Press, Washington D.C, pp 237–268

    Chapter  Google Scholar 

  • Pinto AJ, Raskin L (2012) PCR biases distort bacterial and archaeal community structure in pyrosequencing datasets. PLoS One 7:e43093

    Article  CAS  Google Scholar 

  • Pinyakong O, Habe H, Omori T (2003) The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs). J Gen Appl Microbiol 49:1–19

    Article  CAS  Google Scholar 

  • Plohl K, Leskovesk H, Bricej M (2002) Biological biodegradation of motor oil in water. Acta Chim Slov 49:279–289

    CAS  Google Scholar 

  • Popp N, Schlomann M, Margit M (2006) Bacterial diversity in the active stage of a bioremediation system for mineral oil hydrocarbon-contaminated soils. Microbiology 152:3291–3304

    Article  CAS  Google Scholar 

  • Raeid MM, Al-Kharusi S, Al-Hinai M (2015) Effect of biostimulation, temperature and salinity on respiration activities and bacterial community composition in an oil polluted desert soil. Int Biodeterior Biodegrad 98:43–52

    Article  CAS  Google Scholar 

  • Rho M, Tang H, Ye Y (2010) FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acid Res 38:20–191

    Article  CAS  Google Scholar 

  • Rojo F (2009) Degradation of alkanes by bacteria. Environ Microbiol 11(10):2477–2490

    Article  CAS  Google Scholar 

  • Salam LB, Obayori OS, Akashoro OS, Okogie GO (2011) Biodegradation of bonny light crude oil by bacteria isolated from contaminated soil. Int J Agric Biol 13:245–250

    CAS  Google Scholar 

  • Salam LB, Ilori MO, Amund OO et al (2014) Carbazole angular dioxygenation and mineralization by bacteria isolated from hydrocarbon-contaminated tropical African soil. Environ Sci Pollut Res 21:9311–9324

    Article  CAS  Google Scholar 

  • Salam LB, Obayori OS, Raji RA (2015) Biodegradation of used engine oil by a methylotrophic bacterium, Methylobacterium mesophilicum isolated from tropical hydrocarbon-contaminated soil. Petrol Sci Technol 33:186–119

    Article  CAS  Google Scholar 

  • Salam LB (2016) Metabolism of waste engine oil by Pseudomonas species. 3. Biotech 6:98

    Google Scholar 

  • Saul DJ, Aislabie JM, Brown CE, Harris L, Foght JM (2005) Hydrocarbon contamination changes the bacterial diversity of soil from around Scott Base, Antarctica. FEMS Microbiol Ecol 53:141–155

    Article  CAS  Google Scholar 

  • Sentchillo VSPA, Zehnder AJB, van der Meer JR (2000) Molecular diversity of plasmids bearing genes that encode toluene and xylene metabolism in Pseudomonas strains isolated from different contaminated sites in Belarus. Appl Environ Microbiol 66:2842–2852

    Article  Google Scholar 

  • Shah V, Zakrzewski M, Wibberg D, Eikmeyer D, Schluter A, Madamwar D (2013) Taxonomic profiling and metagenomic analysis of a microbial community from a habitat contaminated with industrial discharges. Microb Ecol 66:533–550

    Article  Google Scholar 

  • Sierra-Garcia IN, Alvarez JC, De Vansconcellos SP, de Souza AP, des Neto EU, Oliveira VM (2014) New hydrocarbon degradation pathways in the microbial metagenome from Brazilian petroleum reservoirs. PLoS One 9(2):e90087. doi:10.1371/Journal.pone.0090087

    Article  CAS  Google Scholar 

  • Singh V, Chauhan PK, Kanta R, Dhewa T, Kumar V (2010) Isolation and characterization of Pseudomonas resistant to heavy metals contaminants. Int J Pharm Sci Rev Res 3:164–167

    CAS  Google Scholar 

  • Smits TH, Witholt B, van Beilen JB (2003) Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Ant Van Leeu 84:193–200

    Article  CAS  Google Scholar 

  • Sophos NA, Vasiliou V (2003) Aldehyde dehydrogenase gene superfamily: the 2002 update. Chem Biol Interact 143–144:5–22

    Article  CAS  Google Scholar 

  • Spain A, Alm E (2003) Implications of microbial heavy metal tolerance in the environment. Rev Undergraduate Res 2:1–6

    Google Scholar 

  • Suenaga H, Koyama Y, Miyakoshi M et al (2009) Novel organization of aromatic degradation pathway genes in a microbial community as revealed by metagenomic analysis. ISME J 3:1335–1348

    Article  CAS  Google Scholar 

  • Suenaga H, Ohnuki T, Miyazaki K (2007) Functional screening of a metagenomic library for genes involved in microbial degradation of aromatic compounds. Environ Microbiol 9:2289–2297

    Article  CAS  Google Scholar 

  • Sutton NB, Maphosa F, Morillo JA et al (2013) Impact of long-term diesel contamination on soil microbial community structure. Appl Environ Microbiol 79:619–630

    Article  CAS  Google Scholar 

  • Streit WR, Schmitz RA (2004) Metagenomics- key to the uncultured microbes. Curr Opin Microbiol 7:492–498

    Article  CAS  Google Scholar 

  • Takeuchi M, Hamana K, Hiraishi A (2001) Proposal of the genus Sphingomonas sensu stricto and three new genera, Sphingobium, Novosphingobium and Sphingopyxis, on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417

    Article  CAS  Google Scholar 

  • Talfournier F, Stines-Chaumeil C, Branlant G (2011) Methylmalonate semialdehyde dehydrogenase from Bacillus subtilis: substrate specificity and coenzyme a binding. J Biol Chem 286(25):21971–21981

    Article  CAS  Google Scholar 

  • Tatusov RL, Natale DA, Garkavtsev IV et al (2001) The COG database: new developments in phylogenetic classification of proteins from complete genomes. Nucleic Acids Res 29:22–28

    Article  CAS  Google Scholar 

  • Top EM, Springael D (2003) The role of mobile genetic elements in bacterial adaptation to xenobiotic organic compounds. Curr Opin Biotechnol 14:262–269

    Article  CAS  Google Scholar 

  • Umechuruba CI (2005) Health impact assessment of mangrove vegetation in an oil spilled sitr at the Bodo West fields in Rivers State, Nigeria. J Appl Sci Environ Man 9:69–73

    Google Scholar 

  • Vaillancourt FH, Bolin JT, Eltis LD (2006) The ins and outs of ring-cleaving dioxygenases. Crit Rev Biochem Mol Biol 41:241–267

    Article  CAS  Google Scholar 

  • van Beilen JB, Panke S, Lucchini S, Franchini AG, Rothlisberger M, Witholt B (2001) Analysis of Pseudomonsas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiol 147:1621–1630

    Article  Google Scholar 

  • Vasiliou V, Pappa A, Petersen DR (2000) Role of aldehyde dehydrogenases in endogenous and xenobiotic metabolism. Chem Biol Interact 129:1–19

    Article  CAS  Google Scholar 

  • Vidali M (2001) Bioremediation. An overview. Pure Appl Chem 73:1163–1172

    Article  CAS  Google Scholar 

  • Villadangos AF, Fu H-L, Gil JA, Messens J, Rosen BP, Meteos LM (2012) Efflux permease CgAcr3-1 of Corynebacterium glutamicum is an arsenite-specific antiporter. J Biol Chem 287(1):723–735

    Article  CAS  Google Scholar 

  • Vivas A, Moreno B, del Val C, Macci C, Masciandaro G, Benitez E (2008) Metabolic and bacterial diversity in soils historically contaminated by heavy metals and hydrocarbons. J Environ Monit 10:1287–1296

    Article  CAS  Google Scholar 

  • Wang W, Shao Z (2013) Enzymes and genes involved in aerobic alkane degradation. Frontiers Microbiol 4(116):1–7

    Google Scholar 

  • Wang L, Wang LFT, Liu H (2007) Treatment of engine oil polluted wastewater with mixed bacterial floral and kinetics of biodegradation. J Chongqing Univ 6:238–241

  • Wu M, Dick WA, Li W, Chen L (2016) Bioaugmentation and biostimulation of hydrocarbon degradation and the microbial community in a petroleum-contaminated soil. Int Biodeter Biodegrad 107:158–164

  • Yang S, Wen X, Jin H, Wu Q (2012) Pyrosequencing investigation into the bacterial community in permafrost soils along the China-Russia crude oil pipeline (CRCOP). PLoS One 7:e52730

    Article  CAS  Google Scholar 

  • Yang S, Wen X, Zhao L, Shi Y, Jin H (2014) Crude oil treatment leads to shift of bacterial communities in soils from the deep active layer and upper permafrost along the China-Russia crude oil pipeline route. PLoS One 9(5):e96552

    Article  CAS  Google Scholar 

  • Yergeau E, Sanschagrin S, Beaumier D, Greer CW (2012) Metagenomic analysis of the bioremediation of diesel-contaminated Canadian high arctic soils. PLoS One 7:e30058. doi:10.1371/journal.pone.0030058

    Article  CAS  Google Scholar 

  • Zhang YQ, Chen J, Liu HY, Zhang YQ, Li WJ, Yu L-Y (2011) Geodermatophilus ruber sp. nov., isolated from rhizosphere soil of a medicinal plant. Int J Syst Evol Microbiol 61(1):190–193

    Article  CAS  Google Scholar 

  • Zhou S, Zhang S, Lai D et al (2013) Biocatalytic characterization of a short-chain alcohol dehydrogenase with broad substrate specificity from thermophilic Carboxydothermus hydrogenoformans. Biotechnol Lett 35(3):359–336

    Article  CAS  Google Scholar 

  • Zhang DC, Mortelmaier C, Margesin R (2012) Characterization of the bacterial archaeal diversity in hydrocarbon-contaminated soil. Sci Total Environ 421-422:184–196

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lateef B. Salam.

Additional information

Responsible editor: Robert Duran

Electronic supplementary material

.

Figure S1

Comparative taxonomic profile of the 1S and AB1 microcosms at order level, computed by MG-RAST. Only orders with significant biological differences (P < 0.05, difference between the proportions >1% and twofold of ratio between the proportions, as determined by STAMP) (DOCX 192 kb)

Figure S2

Comparative taxonomic profile of the 1S and AB1 microcosms at family level, computed by MG-RAST. Only families with significant biological differences (P < 0.05, difference between the proportions >1% and twofold of ratio between the proportions, as determined by STAMP) (DOCX 187 kb).

Figure S3

Functional characterization of metagenomic sequencing reads of Agricultural soil 1S microcosm according to the Cluster of Orthologous Groups of protein (COGs). The categories for COG are abbreviated as follows: C: energy production and conversion; E: amino acid transport and metabolism; F: nucleotide transport and metabolism; G: carbohydrate transport and metabolism; H: coenzyme transport and metabolism; I: lipid transport and metabolism; D: cell cycle control, cell division, chromosome partitioning; N: cell motility; T: signal transduction mechanism; U: intracellular trafficking, secretion and vesicular transport; V: defense mechanisms; K: transcription; L: replication, recombination and repair; R: general function prediction only; S: function unknown (DOCX 29 kb).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salam, L.B., Obayori, S.O., Nwaokorie, F.O. et al. Metagenomic insights into effects of spent engine oil perturbation on the microbial community composition and function in a tropical agricultural soil. Environ Sci Pollut Res 24, 7139–7159 (2017). https://doi.org/10.1007/s11356-017-8364-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-017-8364-3

Keywords

Navigation